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Abstract: A decentralized model-based predictive controller is used for the design of 
discrete-time control systems aiming at regulating the air temperature and heat supply 
in greenhouses. Moreover, alternative techniques are proposed for the approximation 
of the decentralized part of the control and the on-line improvement of the overall 
control problem. A state space model is used to predict the corresponding local indoor 
temperature over a long-range time-period and approximate models are used to predict 
the interactions among the subsystems. The sun radiation and outdoor temperature are 
treated as external disturbances that affect the overall system dynamics. A series of 
energy fluxes consist the heating system and the predictive controllers have proved to 
be powerful in controlling the supply temperature. Copyright 2002 IFAC 
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1. INTRODUCTION 
 

Optimal control strategies in greenhouse climate 
systems are nowadays of significant importance for 
researchers and practitioners (van Straten, 1999; van 
Stratten, et al., 2000; Lacroix and Kok, 2000; Linker 
et al., 2000; Sigrimis et al., 2000). The control 
algorithms usually designed in a heuristic way deci-
de about heating and ventilation and produce tempe-
rature, humidity and carbon dioxide control actions 
(Arvanitis et. al., 2000; Albright et al., 2000, Linker 
et al., 2000). Optimal cultivation control has also 
been considered towards the key idea of calculating 
a control sequence such that the difference between 
the revenues from the crop and the costs from the 
resources is maximized. Normally, the objective is 
not formulated as a direct goal function based on 
economic terms but in terms of controller perfor-
mance or desired properties of the controlled sys-
tem. In practice, optimal control techniques require 

a reasonable description of the dynamics of the sys-
tem and are strongly depended on the model used. 
 

In this paper, an alternative optimal approach that 
combines Model Based Predictive Control (MBPC) 
(Camacho and Bordons, 1994; Kouvaritakis et al., 
2000; Rodrigues and Odloak, 2000) and decentrali-
zed control (DC) issues (Tzafestas et al., 1997; 
Yang et al., 2001), is considered. The result is a 
decentralized model based predictive control 
scheme (DMBPC), which is achieved by a suitable 
estimation of the interactions at each control 
station. The approach takes advantage from the 
weighted robustness against modeling errors and 
parameter variations of the model used due to the 
features of MBPC. Moreover, it takes advantage of 
the disturbances/interactions efficient handling and 
the low dependence of the model itself due to the 
decentralized way (DC) of computing and feeding 
the control actions. The combined optimal approach 
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is implemented and evaluated in a new model that 
consists of interconnected subsystems describing 
the overall heat dynamics of a greenhouse. The mo-
del is based on the general principles of a previous 
work (Nielsen and Madsen, 1998). The present paper 
describes how to identify an approximate model of 
interconnected submodels for the heat dynamics of a 
greenhouse by parameters of physical interpretation 
using the heat supplies of an N-node heating system, 
the global radiation and the outdoor air temperature 
as input variables (Fig. 1). The model predicts the air 
temperature at each node by a number of coupled 
linear differential equations and an associated dis-
crete time model is derived for the need of the digi-
tal predictive algorithm used to control the system.  
 
 

2. GREENHOUSE HEAT DYNAMICS.  
 

The solution of the heat diffusion equation for heat 
conduction in all parts of a greenhouse and additio-
nally the calculation of the heat transfer between the 
outer air and all the surfaces becomes a problem of 
high complexity and low practical importance. A 
common simplification implied by Nielsen and 
Madsen (1998) is the lumped capacitance method. 
The main assumption is that the heat capacities of 
the greenhouse are lumped in certain nodes where 
the temperature in each node is spatially uniform 
(see Fig. 1).  
 

In the present approach a main different issue is 
considered in regard to the original work by Nielsen 
and Madsen (1998): the heating system and all ex-
ternal inputs (outer temperature, solar flux) affect 
directly and independently all nodes instead of only 
the 1st one. For such a model, the energy balance at 
each node in the greenhouse is: 
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where qst, qin,  qout are the stored input and output 
energy (J), Ci is heating capacity (J/K) of node i, and 
Ti (

oK) is the temperature of node i. Thus, the energy 
balance of the i-th node is: 
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where for the factors ai and bi holds:  
 





=
<≤

=
Ni0

Ni11
ai  and 





≤<
=

=
Ni11

1i0
bi       (1b) 

 

In equation (1a-b), T0 is the temperatures of the 
outdoor air, R0,i (oK/W) is the resistance to heat 
transfer between the i-th node and the outside; Ri (in  
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Fig.1. Energy fluxes in a greenhouse with N nodes.  
 
K/W) is the resistance to heat transfer between nodes 
I and i+1. The energy Qi (W) is the heat input from 
the heating system to the i-th node. The heat flux 
from solar radiation Ö (W/m2) and Ai (m

2) describes 
the effective horizontal glass area exposed to the 
global radiation, i.e. the area corrected for reflection, 
shading, dust, etc. respective to the i-th node.  
 

Equation (1a-1b) can be written in the matrix notation 
a linear differential equation: 
 

 BUAT
T +=

dt
d

 (2) 
 

where: 
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and the matrices A, B are given in the Appendix. 
 

The system of equation (2) can easily be converted to 
a discrete time system for the needs of the digital 
predictive control algorithm. The resultant discrete 
time, linear, possibly time-varying system, which 
consists of N-interconnected subsystems, each of 
which has the following state space description:  
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where zi(t) is the interconnection input which 
describes the influence of all other subsystems upon 
the i-th one. The vector zi(t) is a linear combination 
of the states (temperatures) of all other subsystems 
and the non – locally controllable inputs To and Ö, i.e. 
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for i=1,2,…,N, where ëij are parameters assumed to 
be known to every control station. It is accentuated 
that the output Ti(t) of the model may generally have 
a small difference from the real (or the measured) 
output Tr,i(t) because of modeling errors or noise, 
which affect the whole system or parts of it. 
 

The problem is to find at every time t the best control  



Qi(t) for the i-th subsystem, which leads the output 
current value Ti(t) to its set-point wi(t). The control 
must be “the best” in the sense of minimizing a cost 
function, which will be described later. Moreover the 
control laws must be specified in a decentralized 
way, i.e. the control laws are assumed to be of the 
form Qi(t)=fi(Ii(t)), i=1,..., N, where fi(t) is a fun-
ction of the available information set Ii(t) of the i-th 
subsystem defined as follows: Ii(t)={Tr,i(0) Tr,i (1), 

Tr,i (2), Tr,i (t); Qi(1), … Qi(t-1)}, Ii(0)=∅.  This 
means that Ii(t) consists not only of the measurement 
of the current output Tr,i(t) but also of the past out-
puts Tr,i(r), Qi(r) r<t. The information set Ii(t) does 
not contain zi(t), which is necessary for the compu-
tation of Qi(t) but not available at the i-th control 
station because it depends on the non-available states  
of the other subsystems Tj(t), ij ≠ . 
 

In the following, predictive control techniques will 
be used to satisfy the problem requirements. It will 
be shown that the control laws are of the form : 
 

Qi(t)=Qic(t)+Qid(t), i=1,2,...,N                   (5) 
 

where Qic(t) is the centralized part of the control, 
i.e. the part that is available to the i-th control 

station, and Qid(t) is the decentralized part of the 
control law, which depends on information not 
available to the i-th control station, and more 
especially depends on zi(t) and predictions of it. 
 
 

3. MBPC ALGORITHM IMPLEMENTATION 
 

MBPC is a control algorithm, which uses a model 
for open-loop predictions, optimizing the control in-
puts on a moving horizon and updating the outputs of 
the model by closed loop predictions. Especially, at 
each time t, the output of the i-th subsystem Ti(t+k/t) 
is predicted over a future period of time k=1,2,...,LT 
where LT is the prediction horizon. The predictions 
are determined by means of a model, for example 
state-space model. The predictions Tpi(t+k/t), k= 
1,2,...,LT depend on future control values Qi(t+k/t), 
k=0,1,...,LQ-1, where LQ is the control horizon 
( TQ LL ≤ ). In the control horizon we have:  
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The output predictions can be calculated as:  
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and qi(t+k/t) is the closed-loop correction vector  
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Fig.2. The characteristics of MBPC: reference traje-
ctory; set-point trajectory; prediction, control and 
coincidence horizon. 
 
based on the available information set at time t. A 
recommended form for qi(t+k/t) is the following: 
 

)t(T)t(T)t/kt(q ii,ri −=+              (8) 
 

A reference trajectory ri(t+k/t), k=1,2,...,LT is defi-
ned over the prediction horizon, which describes how 
the output Ti(t) is guided to its set-point wi(t), i.e. 
 

)t/kt()t/kt(w)t/kt(r iii +υ++=+          (9) 
 

where õi(t+k) is a correction vector based on the 
previous error information set {wi(t)-Tr,i(t), wi(t-1)-
Tr,i(t-1),..., wi(1)-Tr,i(1)}. A simple form that gives 
good results is the following: 
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where 1a0 ≤<  is a tuning parameter that specifies 
the desired closed-loop dynamic ( 0a → :fast con-
trol; 1a → :slow control). 
 

The reference trajectory is initiated at the current 
measured output i.e. ).t(T)t/t(r i,ri =  It is noted that 

if the future set-point values wi(t+k/t), k=1,2,...,LT 
are unknown at time t, one can assume that: 
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All the above are illustrated in Fig.2. 
 

The cost function of the i-th control station is : 
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where 0)k(Si ≥ , for k=L0,…,LT and 0)k(Ri >  for 

k=0,…,LQ-1. 
 

Since Ji(t) varies with t and has a moving optimiza-
tion horizon, only the first term in the optimal solu-
tion is implemented to control the i-th subsystem.  
 

The optimization parameter Lo determines, together  
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Fig.3. The local MBPC controller as it is applied to 
the i-th subsystem 
 
with LT, the “coincidence horizon” how the predicted 
output follows the reference trajectory over the time 

interval [t+Lo,...,t+LT]. The basic concept of the 
MBPC structure as it is applied at the i-th subsystem 
is shown in the Fig.3. 
 

In computing the optimal control in the i-th control 
station the following notation is introduced: 
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Then, equation (7) can be formulated as: 
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Moreover,  
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and the cost function (12) can be rewritten as: 
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Solving, derives the minimization of the cost defined 
by equation (17)  
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After some simple calculations, (18a) yields: 
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whereas, equation (18b) leads to: 
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denying that the problem is always solvable with the 
criterion being minimized.  
 

Equation (19) can be rewritten in the form: 
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where the first term of (21) is the centralized part of 
the control i.e., 
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and the second part is the decentralized part, i.e., 
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Note that only the first element )t/t(Qi of the solu-

tion vector )t(ˆ
iQ will be supplied to every subsy-

stem. Then, a new measurement )1t(T i,r + will be 

available and the whole procedure will be repeated. 
 

The centralized part of the control (equation (22)) 
depends on information, which is locally available at 
the i-th control station. The decentralized part of the 
control (equation (23)) depends on information, 
which is not available at the i-th control station. This 
information is the extended interaction vector which 
consists of present and future values of the 
interaction vectors zi(t+k/t), k=0,1,...,LT-1. None of 
the previous vectors are available at the i-th control 
station because they all depend on the outputs (pre-
sent and future) of the other subsystems. Approxi-
mating techniques using interaction models or mo-



del following controllers can be used to locally re-
construct the decentralized part of the control but 
that will higher the overall computational burden and 
complex the problem. Moreover, MBPC algorithm 
has proved robust enough to deal with uncontrol-
lable inputs of systems in many cases. The subopti-
mal solution derived by only feeding the centralized 
part of the control at each subsystem has proved to 
be efficiently accepted (Tzafestas et al., 1997). 

 
 

4. APPROXIMATIONS FOR THE 
DECENTRALIZED PART OF THE CONTROL 

 

It is well known that MBPC techniques can manage 
systems with unusual dynamical behavior efficiently 
and introduce in a natural way feedforward control 
action for compensating the disturbances. If we con-
sider zi(t) in the dynamical equation (1a) as a distur-
bance for the i-th subsystem, then for the case of 
weakly coupled systems in which the elements of 
the matrices Ei, i=1,...,N, are small enough we can 

make the assumption that 0)t(ud
i ≈ , and let the 

centralized part )t(u c
i  alone to control the system. 

Two different techniques for the case where this is 
not true are the following. 
 

(a) The case of problems with m-step delay sha-
ring pattern and a linear model for the inter-
connections. 

A decentralized control problem is said to have an 
m-step delay-sharing pattern when it permits the 
spreading of its information through the subsystems 
but with delay of m time steps. Clearly each control 
station obtains instantaneously all information about 
its associated subsystem, and after a delay of m time 
steps all the information available to all control 
stations. For our problem this means that at time t in 
the i-th control station the vectors Tj(t-m), ij ≠  and 

all the past values Tj(t-m-k), k>0 are known. 
 

Then one can calculate zi(t-m) using equation (4) as: 
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i.e. zi(t-m) is well known to the i-th control station at 
time t. 
 

The presumption that the vector zi(t-m) is the output 
of a linear model having order p and coefficients aij, 
j=1,2,...,p, i.e.  
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where )mt(z~i −  is an estimate of zi(t-m), is now 

made. 
 

The coefficients aij of the linear model (24) can be 

calculated on-line at every time t in the least squares 
sense by minimizing the norm of the error vector: 
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After having calculated the coefficients aij one can 
use the model (23) to produce the predictions 
zi(t+k/t), k=1,2,...,Ly-1 that are needed in equation 
(23) in order to approximate the decentralized part of 

the control udi(t). The predictions are: 
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(b) On-line improvement for the predictions of the 

interconnections, based on a model for them 
In this approximation a method will be suggested 
which provides on-line improvement for the predi-
ctions of the interconnections. This method will re-
duce the dependence of the predictions from the 
original model used for them. Moreover, the case of 
problems that do not have m-step delay sharing 
patterns will be covered, where one cannot use a 
linear model for the interconnections with on-line 
computation of its parameters because of the non-
spreading of the information. For this case one can 
use a model of the form 
 

Z=Azi(t-1)                                  (27) 
 

where Azi is the part of the whole system matrix 

Cg=C+EL (C=diag[Ci], E=diag[Ei], L=[ëij]) that 
corresponds to the elements of the vector zi (Singh, 
1981). The predictions provided by (27): 
 

1L,...,1,0k),t/1kt(zA)t/kt(z TiZi i
−=−+′=+′ (28) 

 

can be used to approximate the decentralized part of 
the control of equation (23). 
 
 

5. CONCLUSIONS 
 

A linear decentralized state space model of the heat 
dynamics of a greenhouse in continuous time is 
introduced and decomposed. The model is useful for 
predicting changes in the air temperature and the 
decomposed formulation of the model allows for the 
treatment of the generic case of multi – heating 
systems in a greenhouse. Although a greenhouse is a 
complex system, it is shown that approximately a few 



nodes can describe the heat dynamics. The optimal 

control Qi(t)=Qic(t)+Qid(t) is optimal in the sense 
of decentralization, but it remains sub-optimal in 
comparison with the solution that would be attainable 
if the whole information was available to every 
control station. The decentralized controller depends 
weakly on the initial conditions and strongly on the 
approximate model used for the interconnections 
zi(t). The last dependence seems to be reduced by the 
actions of the predictive controllers and the principle 
of the moving prediction horizon that enriches the 
robustness of the control algorithm against both 
parameter variations and external disturbances. An 
approximate calculation of the decentralized part of 
the control based on model following controllers and 
approximate interconnection models are used to 
improve the overall control performance. 
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