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Abstract: A single origin and single destination highway traffic network with multiple routes 
and sections is considered. For dynamic routing of traffic, accurate measurement of traffic 
densities is needed, which requires the placement of many sensors, one for each section, 
which can be a costly solution. In this work, a simpler solution is presented based on a single 
sensor placed at the destination node and the use of a state dependent Riccati equation filter 
for estimation of traffic densities in each section of every route. Two sets of simulations are 
provided for illustration. In addition, a comparative robustness study with extended Kalman 
filter involving performance under different noise level is included. Copyright © 2002 IFAC 
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describe on-line applications of nonlinear estimators. In 
this work, the performance of SDRE is compared against 
the extended Kalman filter (EKF) which has been used as 
the benchmark in nonlinear estimation problems. 
Simulation results demonstrate the effectiveness of this 
proposed sensor placement/estimation scheme by 
comparing the EKF and SDRE results with the true state 
values. In section 2, the dynamic traffic and the 
measurement models are given. Section 3 introduces EKF 
and SDRE filter used. Simulation studies are presented in 
section 4. 

 
1.   INTRODUCTION 

                                          
Dynamic feedback traffic routing is becoming a more 
viable solution to the traffic and incident management 
problems in Intelligent Transportation Systems (ITS). The 
references Papageorgiou (1990), Tan, et al (1993), and Peta 
and Mahmassani (1995) contain a small sample of 
feedback control approaches to highway traffic routing. 
These developments are the result of advances in sensor, 
actuator, communication, and control technologies as 
reported in Hasan and Yaz (1999). In dynamic routing, the 
effectiveness of a control strategy depends largely on the 
ability to accurately measure the state variables. This 
necessitates a very expensive solution to the feedback 
control implementation problem, namely, one typically 
needs to place a sensor in each section of every route to 
measure these traffic densities.   

2.    SYSTEM DESCRIPTION 
              
Figure 1 illustrates a single-origin and single-destination 
freeway flow system where u is the input traffic flow, βi is 
the split factor for the ith route,  is the traffic density on  ji,ρ
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In this work, a nonlinear estimation technique is proposed, 
which uses only one sensor strategically placed at the 
destination node. This is a very cost effective alternative to 
the usual sensor placement scheme. The sensor measures 
the traffic occupancy defined in Gaber and Hoel (1997) 
through which the outflowing traffic density can be 
computed. This computed value is used as the measured 
output of the system where the sensing and computational 
errors are included in the measurement model as an 
additive noise term.  A state dependent Riccati equation 
(SDRE) filter is used to then estimate individual traffic 
densities in every section of every route. On-line use of 
state estimators in this context is relatively new. 
Traditionally, the use of estimators has been confined to 
off-line computations for origin-destination trip table 
coefficients as in Okutani (1987) and Yang and Zhou 
(1998). Iwata, et al (1996) and Bartolini, et al (1996)  

Fig. 1 Single-origin/single-destination freeway 

the ith route jth section and z is the output flow.  There are N 
alternate routes and each route is subdivided into Ni 
sections. To facilitate mathematical modeling of this traffic 
flow system, it is assumed that: i) the traffic density in each 
section is uniform and ii) there is drivers’ full compliance 
with βi (or if not, then the compliance factor can be made 
available to the estimator).  Using these assumptions in 
conjunction with Greenshield (1935) model, the freeway 
flow system can be represented by the following space-
discretized equations   
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where δi,j is the length of the jth section on the ith route, qi,j 
is the traffic flow in that section,  is the equivalent secti-                                       

on speed, v  is the section free-flow speed and  is 
the maximum traffic jam density.  Combining (2.1), (2.2) 
and (2.3), for j = 1, and i = 1,2,…,N-1, we obtain 
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where  is the (formal) white noise with zero mean and 
 variance.  This formal description is justified in this 

case because the noise term has a constant coefficient that 
allows the use of regular calculus not necessitating the use 
of Ito calculus (Gard, 1988).  This noise term physically 
represents the errors in modeling, especially the 
computational error made in space-discrimination of 
original partial differential equations, see Musha and 
Higuchi (1987).  For i = N, the traffic density becomes   
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and for j ≠ 1, it is defined as: 
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   (2.6)                                   
It will be assumed that a single sensor is placed at the 
destination node.  In this case, there are several choices for 
the sensor.  In the present work, it is assumed that the 
occupancy variable is being measured at the destination 
node.  Therefore, the following relationship can be used to 
compute the sum of the densities (Gaber and Hoel, 1997): 

                            ∑                             (2.7)           
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5280γρ                Consider the freeway flow dynamics description as given 
by (2.9) and (2.10). We define the Jacobian: 

 where γ  is the percent of  time that a detector is sensing a 
vehicle’s presence to the total time in some chosen time 
interval, 5280 is the conversion factor from miles to feet, 
and Leff is the effective vehicle length in ft.  Therefore the 
measurement equation becomes: 
 
                                                                                       (2.8) 
                                                    
                                                                                  
 
 
 
where the first part denotes the calculated sum of densities, 
and ζ  denotes the measurement and computational error 
modeled as white noise with zero mean and Z  

variance.  A compact form of the freeway flow dynamics 
description can be written as follows: 
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and W is the covariance of the process noise in (2.9). 
 

3.  THE NONLINEAR ESTIMATORS 
 
Given the system and the measurement scheme in (2.9) and 
(2.10), the nonlinear estimation problem involves 
constructing estimates of the state vector based on the 
measurement history. The full knowledge of system 
parameters including the split factors and the traffic inflow 
variable is assumed in this work. Subsequent works will 
involve relaxation of these assumptions. 
 
Under these assumptions, the EKF (see Gelb,1974), which 
can be considered the industry standard, and SDRE, 
(Mracek, et al 1996), with promising performance 
characteristics (see Mracek, et al 1996, Azemi and Yaz, 
1999) are used for state estimation. Obviously, there are 
other possible candidates for this task (see Azemi and Yaz, 
1999). Employment of alternative nonlinear estimation 
techniques and their performance comparison for this 
system description will be left to future works. 
 
3.1 Observer Design Using EKF 
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where  is the state estimate obtained by the EKF for 
the given dynamical description which is as follows: 
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with the initial condition  is set to the expected value 
of , where the Kalman gain satisfies 
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and is the solution to the matrix Riccati differential 
equation 
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with initial condition P(0) equal to the covariance of the 
initial state if it is available. 
 
3.2 Observer Design Using SDRE 
 
Application of SDRE technique has become more popular 
in recent years. SDRE design methods have been used in 
nonlinear filter development and control designs for some 
nonlinear benchmark problems (Mracek, et al 1996). In this 
approach, an algebraic Riccati equation is solved at each 
time by updating its parameters via substitution of the 
present state estimate that evolves over time.  
 
Let us consider the same system dynamics given by (2.9) 
and (2.10), and also assume that the nonlinear dynamics 
are representable by the following linear structure having 
state-dependent coefficient form: 
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The SDRE filter is given by 
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where the filter gain is computed as  
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and P(t) is the solution to the algebraic Riccati equation  
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Based on the EKF and SDRE design procedures described 
in the previous section, the relevant coefficient matrices for 
the EKF and SDRE are found and indicated in Fig.3 and 
Fig. 4, respectively with C . Following the 
procedures mentioned above, we discretized the 
continuous-time system with time interval 10

]1010[=

-4, and then, 
carried out the simulation via a MATLAB code. 
Simulation results are shown in Figs. 5-12. Both EKF and 
SDRE can estimate the state-variables (traffic densities in 
our example) well. In other words, each estimation error 
gradually converges to zero. However, it is found that the 
convergence rate is highly related to the choice of initial 
values. Since this is a nonlinear estimation problem where 
the convergence can only be local, good initial guess may 
be beneficial for the fast convergence. 

that needs to be solved at each different . 0≥t
 

4.  SIMULATION STUDIES 
 
In this section, two examples will be given to demonstrate 
the application of the SDRE in comparison with EKF to 
estimation of traffic densities of all sections based on 
processing of the measurement made at the destination 
node. 
Example 1: Let us assume a traffic network with two 
routes having two sections each. For cost-effectiveness, we 
use one sensor placed at destination node as indicated in 
Fig. 2. 

The following values of the model parameters are used in 
the simulation: The maximal vehicle density in each  
section: . The initial vehicle 
density in each section: 

1502,21,22,11,1 ==== mmmm ρρρρ
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551,1 =fv , , , . The length of each 
section: 
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δ , 92,1 =δ , 81,2 =δ ,  72,2 =δ . The initial 
values for EKF and SDRE: 765.12)0(ˆ 1,1 =ρ , 925.8)0(ˆ 2,1 =ρ , 

625.15)0(ˆ 1,2 =ρ ,  875.10)0(2, =ˆ2ρ . The diversion factor for the 
first route: 4.0=β . The inflow of traffic: )sin(2400 t⋅=)(tu . 
The sampling interval: T . The P4−10=

)01

)

0 matrix in EKF: P0  

= 10I4. The modeling and computational error 
~ N  or Gaussian white noise with zero 

mean and 0.01 variance. The sensor and computational 
error 

)2,1 ,0(

.0,0(N

,(, =jiw ji .

01~ζ .  

 
  
 
 
 
 
 
 
 
 
 























−−−

−−

−−−

−−

=

)]1([)]1([00

0)]1([00

00)]1([)]1([

000)]1([

2,2

2,2

2,21,2

1,2

2,2

1,2

1,2

1,2

2,1

2,1

2,11,1

1,1

2,1

1,1

1,1

1,1

ˆ2
2,2

1ˆ2
1,2

1

ˆ2
1,2

1

ˆ2
2,1

1ˆ2
1,1

1

ˆ2
1,1

1

mm

m

mm

m

ff

f

ff

f

vv

v

vv

v

F

ρ
ρ

δρ
ρ

δ

ρ
ρ

δ

ρ
ρ

δρ
ρ

δ

ρ
ρ

δ

 

          Fig.3 The EKF system matrix in example 1 
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Fig. 2   Two routes and two sections of each 
                                    :    Sensor location 
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Fig.4 The SDRE system matrix in example 1
  

 

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2

x  1 0 4

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

T i m e

S t a t e  1
S D R E    
E K F     

 

 

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2

x  1 0 4

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 . 4

T i m e

E K F  
S D R E

 
                 Fig.5 Comparison of state 1 with its estimates 

  
 Fig.9 Comparison of state 1 absolute error in estimation. 
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                   Fig.6 Comparison of state 2 with its estimates 
  

Fig.10 Comparison of state 2 absolute error in estimation  
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 Fig.7 Comparison of state 3 with its estimates  
 Fig.11 Comparison of state 3 absolute error in estimation 
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Fig.12 Comparison of state 4 absolute error in estimation Fig.8 Comparison of state 4 with its estimates  
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Fig.14 Comparison of state 1 with its estimates 

 
Example 2: This time, we design EKF and SDRE observers 
for a segment of a freeway with three routes having one 
section each as shown in Fig. 13, assuming the following 
simulation parameters: The maximal vehicle density in 
each section: . The initial vehicle 
density in each section: 

150321 === mmm ρρρ
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The free speeds in each section: v . The 
length of each section: , , 
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21 == ff vv
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553 =f

101 =δ δ2 δ . The initial 
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, . The diversion factor for the first 
route:
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                         Fig.15 Comparison of state 2 with its estimates 
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Fig. 13 Three routes and one section of each 
:    Sensor location 

 
                          Fig.16 Comparison of state 3 with its estimates 
Now, the EKF coefficient matrix becomes 
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and the SDRE coefficient matrix becomes 

                   Fig.17 Comparison of state 1 absolute error in estimation   
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Fig.18 Comparison of state 2 absolute error in estimation 





















−−

−−

−−

=

)]1([00

0)]1([0

00)]1([

3

3

3

2

2

2

1

1

1

ˆ
3

1

ˆ
2

1

ˆ
1

1

m

m

m

f

f

f

v

v

v

A

ρ
ρ

δ

ρ
ρ

δ

ρ
ρ

δ

 

 
with . The simulation results are shown in 
Figs. 14-19. It can be seen that the observers estimate each 
state-variable well.  
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        Fig.19 Comparison of state 3 absolute error in estimation 
 
The robustness of the above observers in the presence of 
modeling, sensor and computational errors are investigated. 
This is done by increasing the process and measurement 
variances W and Z. This is an important study since in 
reality, the proposed schemes have to work in noisy 
environments. The squared errors (SE), which is defined as  

 

dtxxxxxxSE
T 2

33
2

22
2

11
0

)ˆ()ˆ()ˆ( −+−+−= ∫  

where T is the final time is calculated for both observers 
for various process and measurement noise variances. As 
shown in Table 1 and 2, EKF has better performance as 
variance is increased.  

 
W EKF SDRE 
0.1 7828 7863 
1 7830 7870 
5 7926 7970 

10 8035 8111 
15 8056 8098 
20 8091 8198 

 
        Table 1.  SE performances of observers as a 
          function of  process noise variance 

 
W EKF SDRE 
0.1 8312 8921 
1 8334 8983 
5 8349 8956 

10 9160 9335 
15 9171 9527 
20 9183 9601 

    
          Table 2.  SE performances of observers as a 
          function of measurement noise variance 

 
5.    CONCLUSION 

A cost-effective alternative to sensor placement and 
density estimation is presented for possible use in dynamic 
routing of traffic for networks with multiple routes having 
multiple sections.  Simulation results are promising in that 
the convergence of the state variable estimates by SDRE is 
almost the same as that achieved with the EKF approach.  
However, the convergence rate is observed to be closely 
dependent on the choice of initial conditions.  Further work 
will involve comparative studies of more types of nonlinear 

estimators, generalization of this sensor placement and 
estimation scheme to the network-wide estimation with 
multiple nodes, and relaxation of the assumption regarding 
the knowledge of our system parameters. 
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