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Abstract: The paper addresses the problem robust output feedback controller design
with guaranteed cost and affine quadratic stability for linear continuous time affine
systems. The proposed design method leads to a non-iterative LMI based algorithm.
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1. INTRODUCTION

Robustness has been recognized as a key issue in
the analysis and design of control systems for the
last two decades. During the last decades numer-
ous papers dealing with the design of static robust
output feedback control schemes to stabilize un-
certain systems have been published (Benton and
Smith,1999; Crusius and Trofino, 1999; Ghaoui
and Balakrishnan, 1994; Geromel, De Souza, and
Skelton, 1998; Henrion, Tarboriech and Garcia,
1999; Kose and Jabbari, 1999; Li Yu and Jian
Chu, 1999; Mehdi, Al Hamid and Perrin, 1996;
Pogyeon and et al, 1999; Tuan and et al, 2000;
Xu and Darouch, 1998; Yong Yan Cao and You
Xian Sun, 1998 ). Various approaches have been
used to study the two aspects of the robust stabi-
lization problem, namely conditions under which
the linear system described in state space can be
stabilized via output feedback and the respective
procedure to obtain a stabilizing or robustly sta-
bilizing control law.
The necessary and sufficient conditions to stabilize
the linear continuous time invariant system via
static output feedback can be found in Kučera and
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De Suoza , 1995, Veselý, 2001. In the above and
other papers, the authors basically conclude that
despite the availability of many approaches and
numerical algorithms the static output feedback
problem is still open.
Recently, it has been shown that an extremely
wide array of robust controller design problems
can be reduced to the problem of finding a feasible
point under a Biaffine Matrix Inequality (BMI)
constraint. The BMI has been introduced in Goh,
Safonov and Papavassilopous, 1995. In this pa-
per, the BMI problem of robust controller design
with output feedback is reduced to a LMI prob-
lem (Boyd, El Ghaoui, Feron and Balakrishnan,
1994).The theory of Linear Matrix Inequalities
has been used to design robust output feedback
controllers in Benton and Smith,1999; Crusius
and Trofino, 1999; El Ghaoui and Balakrishnan,
1994;Henrion, Tarboriech and Garcia, 1999; Li Yu
and Jian Chu, 1999; Tuan, Apkarian, Hosoe and
Tuy, 2000, Vesely, 2001. Most of the above works
present iterative algorithms in which a set of LMI
problems are repeated until certain convergence
criteria are met. The V-K iteration algorithm
proposed in El Ghaoui and Balakrishnan, 1994
is based on an alternative solution of two convex
LMI optimization problems obtained by fixing the

Copyright © 2002 IFAC
15th Triennial World Congress, Barcelona, Spain



Lyapunov matrix or the gain controller matrix.
This algorithm is guaranteed to converge, but not
necessarily, to the global optimum of the problem
depending on the starting conditions. This paper
is concerned with the class of uncertain linear
systems that can be described as.

ẋ(t) = (A0 + A1θ1 + . . . + Akθk)x(t) (1)

where θ = [θ1...θk] ∈ Rk is a vector of uncer-
tain and possibly time varying real parameters
(Gahinet, Apkarian and Chilali, 1996).
The system represented by(1) is a polytope of
linear affine systems which can be described by
a list of its vertices

ẋ(t) = Dcix(t), i = 1, 2, ..., N (2)

where N = 2k.
The system represented by (2) is quadratically
stable if and only if there is a Lyapunov matrix
P > 0 such that

DT
ciP + PDci < 0, i = 1, 2, ..., N (3)

A weakness of quadratic stability is that it guards
against arbitrary fast parameter variations. As a
result, this test tends to be conservative for con-
stant or slow-varying parameters θ. To reduce con-
servatism when (1) is affine in θ and the parame-
ters of system are time invariant, in Gahinet, Ap-
karian and Chilali, 1996 the parameter-dependent
Lyapunov functions P (θ) has been used in the
form

P (θ) = P0 + θ1P1 + ... + θkPk (4)

In this paper, new necessary and sufficient con-
ditions to stabilize continuous time systems via
static output feedback (Veselý, 2001) have been
used to design a robust controller for system (1).
For guaranteed cost and system (1)this leads to
a non iterative LMI based algorithm. The design
procedure guarantees with sufficient conditions
the robust affine quadratic stability for closed loop
systems.
The paper is organized as follows. In Section 2 the
problem formulation and some preliminary results
are brought. The main results are given in Section
3. In Section 4 the obtained theoretical results are
applied. We have used the standard notation. A
real symmetric positive (negative) definite matrix
is denoted by P > 0 (P < 0). Much of the
notation and terminology follows the references
of Kučera and De Souza, 1995 and Gahinet, Ap-
karian and Chilali, 1996.

2. PRELIMINARIES AND PROBLEM
FORMULATION

We shall consider the following linear time invari-
ant continuous time uncertain systems

ẋ(t) = A(θ)x(t) + B(θ)u(t) (5)

y(t) = C(θ)x(t), x(0) = x0

where x(t) ∈ Rn is the plant state; u(t) ∈ Rm is
the control input; y(t) ∈ Rl is the output vector
of system; A(θ), B(θ), C(θ) are matrices of appro-
priate dimensions. The following definition and
theorem will be exploited in the next development
(Gahinet, Apkarian and Chilali, 1996) .
Definition 1. The linear system

ẋ(t) = Ac(θ)x(t), x(0) = x0 (6)

is affine quadratically stable if there exist k + 1
symmetric matrices P0, P1, ..., Pk such that

P (θ) = P0 + P1θ1 + ... + Pkθk > 0 (7)

and

dV (x, θ

dt
= x(t)T (AT

c (θ)P (θ)+ (8)

P (θ)Ac(θ) +
dP (θ)

dt
)x(t) < 0

2

Note that quadratic stability corresponds to the
case P1 = ... = Pk = 0. Sufficient affine quadratic
stability conditions are given by the next theorem.
Theorem 1. Consider the linear systems governed
by (6), where Ac(θ) depends affine on the uncer-
tain parameter vector θ = [θ1...θk] and θi satisfies

θi ∈< θi, θi >, θ̇i ∈< νi, νi > (9)

i = 1, 2, ..., k
where θi, θi, νi, νi are known lower and upper
bounds. Let Γ and Λ denote the sets of corners of
the parameters box (9) and of the rate of variation
box (9), respectively

Γ = {(γ1, ..., γk) : γi ∈< θi, θi >} (10)

Λ = {(λ1, ..., λk) : λi ∈< νi, νi >}

and let

θm = [
θ1 + θ1

2
, ...,

θk + θk

2
]

denote the average value of the uncertain param-
eters vector. This system is affine quadratically



stable if Ac(θm) is stable and there exist k+1 sym-
metric matrices P0, P1, ..., Pk such that P (θ) > 0
satisfies

L(γ, λ) = Ac(θ)T P (θ)+ (11)

P (θ)Ac(θ) + P (λ)− P0 < 0

for all (γ, λ) ∈ Γ× Λ and

AT
ciPi + PiAci ≥ 0 (12)

for i = 1, 2, ..., k. When (11) and (12) are met, a
Lyapunov function for (6) and all trajectories θ(t)
satisfying (9) is given by

V (x, θ) = xT (t)P (θ)x(t)

2

The following performance index is associated
with the system (5)

J =

∞∫

0

(x(t)T Qx(t) + u(t)T Ru(t))dt (13)

where Q = QT ≥ 0, R = RT > 0 are matrices of
compatible dimensions.
The problem studied in this paper can be for-
mulated as follows: For a continuous time system
described by (5) design a static output feedback
controller with the gain matrix F and control
algorithm

u(t) = Fy(t) = FC(θ)x(t) (14)

so that the closed loop system

ẋ = (A(θ) + B(θ)FC(θ))x(t) (15)

is affine quadratically stable with guaranteed cost.
Definition 2. Consider the system (5). If there
exists a control law u∗ and a positive scalar J∗

such that closed loop system (15) is stable and
the closed loop value cost function (13) satisfies
J ≤ J∗, then J∗ is said to be the guaranteed cost
and u∗ is said to be the guaranteed cost control
law for system (5). 2

3. THE MAIN RESULTS

In this paragraph we present a new procedure
to design a static output feedback controller for
affine continuous time linear systems (5) which
ensure the guaranteed cost and affine quadratic
stability of closed loop system. The following the-
orem is one of the main results.
Theorem 2. For system (5) and Lyapunov function

V (θ) = x(t)T P (θ)x(t) > 0 the following state-
ments are equivalent:

• System (5) is static output feedback affine
quadratic stabilizable (AQS) with guaran-
teed cost

∞∫

0

x(t)T (Q + C(θ)T FT RFC(θ))x(t)dt

≤ xT
0 P (θ)x0 (16)

• There exist k+1 symmetric matrices P0, P1, ...,
Pk that P (θ) > 0, positive definite matrices
Q and R, and matrix F such that the follow-
ing inequality holds

(A(θ) + B(θ)FC(θ))T P (θ)+ (17)

P (θ)(A(θ) + B(θ)FC(θ)) + Ṗ (θ)+

Q + C(θ)T FT RFC(θ) < 0

• There exist k+1 symmetric matrices P0, P1, ...,
Pk that (7) holds, positive definite matrices Q
and R, and matrix F such that the following
inequality holds

A(θ)T P (θ) + P (θ)A(θ)− P (θ)B(θ)R−1

B(θ)T P (θ) + Ṗ (θ) + Q+ (18)

G(θ)T R−1G(θ) < 0

where

G(θ) = B(θ)T P (θ) + RFC(θ)

• There exist k+1 symmetric matrices P0, P1, ...,
Pk that (7) holds, positive definite matrices Q
and R, and matrix F such that the following
inequality holds

A(θ)T P (θ) + P (θ)A(θ)− (19)

P (θ)B(θ)R−1B(θ)T P (θ) + Ṗ (θ) + Q < 0

G(θ)φ(θ)−1G(θ)T −R < 0 (20)

where

φ(θ) = A(θ)T P (θ) + P (θ)A(θ)−
P (θ)B(θ)R−1B(θ)T P (θ) + Ṗ (θ) + Q

Proof of this theorem is omitted. 2

Because of Theorem 1, inequalities (17), (18) and
(19), (20) are negative in the box (10) if they
take negative values at the corners of (10); that
is if they are negative for all γ in the vertex set
Γ given by (10) and inequality (12) holds for all
i = 1, 2, ..., k. In the vertex set (10) define the
polytopic system in the form

{(D1, E1,H1), ..., (DN , EN ,HN )} (21)



where

D1 = A0 + θ1A1 + θ2A2 + ...

E1 = B0 + θ1B1 + θ2B2 + ... (22)

H1 = C0 + θ1C1 + θ2C2 + ...

In (21) each vertex is calculated for different
permutation of the k variables θi, i = 1, 2, ..., k
alternatively taken at maximum and minimum
values. Let us introduce the inverse Lyapunov
matrix S(θ) as (Gahinet, Nemirovski, Laub and
Chilali, 1995)

S(θ) = P (θ)−1 = S0 + θ1S1 + ... + θkSk (23)

For the new variable S(θ), equations (11), (12)
and (19) read as follows

L(γ, λ) = S(γ)A(γ)T + A(γ)S(γ)− (24)

(Ṡ(λ)− S0) < 0

SiA
T
i + AiSi ≥ 0 i = 1, 2, ..., k (25)

and

S(γ)A(γ)T + A(γ)S(γ)−B(γ)R−1B(γ)T−
(Ṡ(λ)− S0) + S(γ)QS(γ) < 0 (26)

For reducing the conservatism of the AQS test
(Gahinet, Apkarian, and Chilali, 1996) nonnega-
tive matrices Mi ≥ 0, i = 1, 2, ..., k are added to
(26) and (25) as follows

S(γ)A(γ)T + A(γ)S(γ)−B(γ)R−1B(γ)T−
(Ṡ(λ)− S0) + S(γ)QS(γ)+ (27)

k∑

i=1

θ2
i Mi < 0

and

SiA
T
i + AiSi + Mi ≥ 0 i = 1, 2, ..., k (28)

The resulting test is generally less conservative for
(27) and (28). However, this improvement is at the
expense of higher computational needs since the
number of optimization variables is increased in
the new LMI problem (27), (28). Combining the
results of (27), (28) and (20) the following algo-
rithm for computation of a robust output feedback
controller with guaranteed affine quadratic stabil-
ity has been proposed.
Algorithm
1. Find the solution of (27) at all vertex (γ, λ) ∈
Γ × Λ with respect to the variables S0, S1, ..., Sk,
M1,M2, ..., Mk from the following LMI inequali-
ties

[
Ni(γ, λ) S(γ)Q
QS(γ) −Q

]
≤ 0 (29)

where

Ni(γ, λ) = S(γ)DT
i + DiS(γ)− EiR

−1ET
i −

(Ṡ(λ)− S0) +
k∑

j=1

θ2
j Mj

i = 1, 2, ..., N

Kj = SjA
T
j + AjSj + Mj ≥ 0 (30)

Mj ≥ ρ1I, S(γ) ≥ ρ2I, Sj ≤ ρ3I, j = 1, 2, ..., k

where I is identity matrix with corresponding
dimensions and ρ1, ρ2, ρ3 are some nonnegative
constants.
2. Calculate the value of the inverse Lyapunov
matrix Sni and Pni, i = 1, 2, ..., N at all vertex
of γ ∈ Γ.
3. Compute the value of Riccati equation at all
vertex of (γ, λ) ∈ Γ× Λ.

φi(λ) = DT
i Pni + PniDi − PniEiR

−1ET
i Pni+(31)

Ṗ (λ) + Q

4. Compute the gain matrix F from the following
LMI inequalities
[ −R ET

i Pni + RFHi

(ET
i Pni + RFHi)T φi(λ)

]
≤ 0 (32)

i = 1, 2, ..., N and λ ∈ Λ

Kj + SjC
T
j FT BT

j + BjFCjSj ≥ 0 (33)

j = 1, 2, ..., k 2

Note that for example S(γ) in (29) reads for i = 1
as follows

S(γ) = S0 + θ1S1 + θ2S2 + ...

If the LMI problems (29)-(33) are feasible, the
resulting gain matrix F guarantees the affine
quadratic stability and simultaneously ensures the
guaranteed cost (16) for the closed loop system
(15).

4. EXAMPLE

In this example we consider the linear model of
two cooperating DC motors. The problem is to
design two PI controllers for a laboratory MIMO
system which will guarantee affine quadratic sta-
bility of a closed loop uncertain system. The sys-
tem model is given by (5) with a time invariant
matrix affine type uncertain structure, where



A0 =




0 −.2148 0 0 0 0 0 0 0 0
1 −1.014 0 0 0 0 0 0 0 0
0 0 0 −.2605 0 0 0 0 0 0
0 0 1 −.9107 0 0 0 0 0 0
0 0 0 0 0 −.1639 0 0 0 0
0 0 0 0 1 −.8137 0 0 0 0
0 0 0 0 0 0 0 −.2279 0 0
0 0 0 0 0 0 1 −.8251 0 0
0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0




A01 =




0 −.025 0 0 0 0 0 0 0 0
0 −.1395 0 0 0 0 0 0 0 0
0 0 0 −.0938 0 0 0 0 0 0
0 0 0 −.2911 0 0 0 0 0 0
0 0 0 0 0 .0188 0 0 0 0
0 0 0 0 0 .0208 0 0 0 0
0 0 0 0 0 0 0 −.0333 0 0
0 0 0 0 0 0 0 −.1173 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




A02 =




0 .0125 0 0 0 0 0 0 0 0
0 .0594 0 0 0 0 0 0 0 0
0 0 0 .0116 0 0 0 0 0 0
0 0 0 .0308 0 0 0 0 0 0
0 0 0 0 0 −.0188 0 0 0 0
0 0 0 0 0 −.0156 0 0 0 0
0 0 0 0 0 0 0 .0208 0 0
0 0 0 0 0 0 0 −.0333 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




B0 =




.3148 0

.0478 0
0 −.1028
0 −.0091
−.0841 0
−.0287 0
0 .3676
0 .2448
0 0
0 0




B01 =




.0625 0
−.0798 0
0 −.0462
0 −.0449
.0016 0
.0072 0
0 .077
0 −.005
0 0
0 0




B02 =




−.0094 0
.0151 0
0 .0019
0 −.003
−.0121 0
−.03 0
0 −.064
0 .0189
0 0
0 0




CT =




0 0 0 0
1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




The number of polytope systems are equal to 4
and the polytope vertices are computed for differ-
ent permutations of the two variables θ1, θ2 alter-
natively taken at their maximum θi and minimum
θi, i = 1, 2. The decentralized control structure
for the two PI controllers can be obtained by the
choice of the static output feedback gain matrix
F structure. It is given as follows

F =
[

f11 0 f13 0
0 f22 0 f24

]

The results of calculation of a static output feed-
back gain matrix F for quadratically and affine
quadratically stable system for different Q =
qI,R = rI, |θ1| = |θ2| = 1 and ρi, i = 1, 2, 3 are
summarized in the following table.

N q r ρ1 ρ2 ρ3 quad aff.quad
1 1.5 1 1.5 1 .166 −.1342 −.0954
2 5 1 1.5 1 .166 +.307 −.1277∗

3 10 1 1.5 1 .166 −.081 −.1922∗∗

4 20 1 1.5 1 .166 +1.11 −.1148
5 10−4 1 1.5 1 .166 −.0164 +.0011
6 10−4 1 10−4 1 .166 −.0164 −.0136
7 .1 1 1.5 1 .166 −.1383 −.0386
8 .1 1 10−4 1 .166 −.1383 −.1133
9 .1 1 0 1 .166 −.1383 −.1449
10 .1 1 0 1 0 −.1383 −.1448
11 10−6 1 0 1 .166 −.0015 −.0015
12 10−6 .1 0 1 .166 −.0134 −.0178

where
quad and aff.guad denote the max(real(eigenvalue))
of the closed loop system for quadratic or affine
quadratic stability, respectively. The solutions are
feasible for 11 and 12 cases. For other cases
the closed loop system is quadratically or affine
quadratically stable but the cost is not guaran-
teed. The static output feedback gain matrix for
cases ∗ and ∗∗ are given as follow

F ∗ =
[−.3582 0 −.376 0

0 −.7927 0 −.7535

]

F ∗∗ =
[−1.0708 0 −.6317 0

0 −2.6952 0 −1.671

]



5. CONCLUSIONS

In this paper, we have proposed a new procedure
for robust output feedback controller design for
linear systems with affine and possible time vary-
ing parameter uncertainty. The feasible solution
of the output feedback controller with sufficient
conditions guarantee the affine quadratic stabil-
ity and guaranteed cost. The design procedure is
based on new necessary and sufficient conditions
for output feedback stabilizability of linear sys-
tems and a non-iterative LMI based algorithm.
A valuable feature of the robust controller design
procedure is that quantitative information about
the rate of parameter variation is readily incorpo-
rated to reduce conservatism in the time varying
case.
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