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Abstract: It is well known that robust optimal experiment design is an extremely computationally
expensive problem. The design is generally solved by discretisation of the design space resulting in
a discrete semi-infinite convex programming problem. To ease the computational burden it is possible
to solve the design problem using the scenario approach to robust convex optimisation. In this paper we
examine the application of a recently proposed idea of ‘variable robustness’ to the experiment design
problem. This approach provides insight into the problem in terms of the effect of reducing the number
of scenarios in a manner that has a suitable trade-off between performance and guarantees. A numerical
example is used to examine the applicability to robust experiment design.
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1. INTRODUCTION

Experiment design essentially involves the manipulation of the
experimental conditions such that maximal information is se-
cured from the experiment. The goal to maximise the amount of
information obtained from a system has motivated substantial
research on experiment design during the last century. Early
research in the statistics literature includes Cox [1958], Fedorov
[1972], Wald [1943], Whittle [1973], Wynn [1972], and, in the
engineering literature, Gagliardi [1967], Goodwin et al. [1973],
Goodwin and Payne [1977], Hildebrand and Gevers [2003b],
Levadi [1966], Mehra [1974], Zarrop [1979]. Some more recent
surveys on experiment design are included in Gevers [2005],
Hjalmarsson [2005], Pronzato [2008] where many additional
references can be found.

From an engineering perspective it is well known [Goodwin
and Payne, 1977, Gevers, 2005, Hjalmarsson, 2005] that the ac-
curacy of models obtained from system identification is largely
dependent upon the experimental conditions and hence requires
a consolidated design. In general, the focus in the engineering
literature has been on experiment design for dynamic system
identification.

A critical issue for experiment design in dynamical systems
is that the model is, typically, nonlinearly parameterised. This
means that the Fisher information matrix [Goodwin and Payne,
1977], which is generally used as the basis for experiment
design, depends, inter alia, on the true system parameters, i.e.
the very thing that the experiment is aimed at finding.

Preliminary work in the engineering literature on robust experi-
ment design includes substantial work on iterative design [Gev-
ers, 2005, Hjalmarsson, 2005], and an insightful sub-optimal
min-max solution for a one parameter problem in Walter and
Pronzato [1997]. Also, a number of recent engineering publi-
cations refer to the idea of min-max optimal experiment de-

sign [Gevers and Bombois, 2006, Mårtensson and Hjalmarsson,
2006, Rojas et al., 2007].

A min-max robust design criterion is the basis of the approach
described in the current paper. Specifically, we assume that we
have available a-priori information that the parameters can take
any value in a compact set Θ. We also constrain the allowable
set of input signals. A typical constraint [Goodwin and Payne,
1977, Zarrop, 1979, Walter and Pronzato, 1997] used in exper-
iment design is one placed on the input energy. The purpose
of min-max robust experiment design is to optimise the input
spectrum for the worst case performance of the identification
procedure (typically measured as a scalar function of the infor-
mation matrix of the model parameters).

The min-max optimisation problem can be considered as a spe-
cial case of a robust convex program [Ben-Tal and Nemirovski,
1998]. In this case a linear objective function is minimised
subject to a number of convex constraints, one for each instance
of the uncertainty.

In robust experiment design it is usual to describe the uncer-
tainty as a continuous set. Presenting this as a robust convex
optimisation problem would give rise to an infinite number of
constraints. This leads to a semi-infinite optimisation problem
that is known to be difficult to solve and possibly NP-Hard
[Ben-Tal and Nemirovski, 1998].

An approach that has been recently developed in Calafiore and
Campi [2005, 2006] to deal with semi-infinite convex program-
ming at a general level is known as the ‘scenario approach’.
The advantage of this method is that solvability can be ob-
tained through random sampling of constraints provided that
a probabilistic relaxation of the worst case robust paradigm is
accepted. The probabilistic relaxation consists in being content
with robustness against the large majority of situations rather
than against all situations. In the scenario approach the num-
ber of situations is under the control of the designer and can
be made arbitrarily close to the set of ‘all’ situations. It has

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

13197



been recently shown [Welsh and Rojas, 2009] that utilising the
scenario approach that the min-max experiment design prob-
lem can be approximated quite closely with considerable gains
made in the reduction of computation time. It should be noted
that the scenario approach does not impose any conditions upon
the dependence on the true parameter, providing the nominal
problem is convex.

In this paper we examine the application of a recently proposed
variable robustness algorithm [Campi and Garatti, 2010a],
which is based on the scenario approach to optimisation, to
robust experiment design. Essentially this algorithm provides
a mechanism for trading guarantees of robustness for perfor-
mance. Basically this algorithm consists of a ‘chance con-
strained’ optimisation [Ben-Tal and Nemirovsk, 2002, Ne-
mirovski and Shapiro, 2006] problem. In this problem there is a
chance that a particular bound on the cost is violated, however,
this chance is constrained by another variable. In this sense
probability can be used to quantify the chance that a certain
performance specification is not met. The variable robustness
algorithm can be considered as a sample based approximation
of the ‘chance constrained’ optimisation problem, with a dis-
crete distribution, where it is possible to determine the violation
versus performance tradeoff. Variable robustness inherently
uses randomisation to determine the region to remove from the
optimisation problem, to improve the cost, by the elimination
of active constraints.

The robust experiment design problem involves a min-max
approach as outlined above and described further in section 2.
In this case, when using the variable robustness algorithm
the max requirement will be relaxed in a probabilistic sense.
Using a simple one parameter example, the tradeoff between
guarantees and performance is examined.

The layout of the remainder of the paper is as follows: Section 2
describes the basic setup of the robust experiment design prob-
lem. The scenario approach for solving robust convex programs
is explained in Section 3. Section 4 describes the scenario
approach with chance constraints and how it is utilised in the
variable robustness algorithm for experiment design. Numer-
ical examples illustrating this approach to robust experiment
design are presented in Section 5. Finally, Section 6 provides
the conclusions.

2. ROBUST EXPERIMENT DESIGN

2.1 The Information Matrix

A well known and intuitive way to compare different experi-
ments is to choose a measure related to the expected accuracy
of the parameter estimator of the model to be obtained from
the experimental data. However, the accuracy of the parameter
estimator is a function of both the experimental conditions
and the form of the estimator. Since we would prefer to have
an ‘estimator-independent’ measure, we may assume that the
estimator used is statistically efficient in the sense that the
parameter covariance matrix achieves the Cramér-Rao lower
bound [Goodwin and Payne, 1977], i.e.

cov θ̂ = M−1,

where M is the Fisher’s information matrix [Casella and
Berger, 2002, Silvey, 1970]. Note that estimators are denoted
by a superscript ‘̂ ’ and implicitly depend on the data length,
N . Therefore, the first step is to determine an expression forM .

To be specific, consider a single-input single-output (SISO)
linear continuous time system, with input u(t) and output y(t),
of the form

y(t) = G(p)u(t) +H(p)w(t)

where G and H are stable rational transfer functions, p is the
time derivative operator,H is minimum phase withH(∞) = 1,
and w(t) is zero mean Gaussian white noise of intensity σ2. We
assume that the system is operating in open loop, hence u(t)
and w(t) are independent. We let θ := [ρT ηT σ2]T where ρ
denotes the parameters in G and η denotes the parameters in
H . Therefore, we assume that G, H and σ2 are independently
parameterised.

Assume that the input u(t) has a zero order hold mechanism,
with sampling period h, and that we sample the output y(t) with
the same sampling period h. Then for estimation purposes we
will have N samples {u(kh), y(kh)}Nk=1. Fisher’s information
matrix M is given by [Goodwin and Payne, 1977]

M =
[
M1 0
0 M2

]
where M1 is the part of the information matrix related to ρ, and
M2 is independent of the input. AssumingN is large, it is more
convenient to work with the scaled average information matrix
for the parameters ρ [Goodwin and Payne, 1977, Walter and
Pronzato, 1997],

M(θ,Φu) := lim
N→∞

1
Nh

M1σ
2

=
∫ ∞

0

M̃(θ, ω)Φu(ω)dω. (1)

where

M̃(θ, ω) := Re

{
∂G(jω)
∂ρ

|H(jω)|−2

[
∂G(jω)
∂ρ

]H}
, (2)

G and H are continuous time transfer functions (assumed
independently parameterised) and Φu is the continuous time
input spectral density.

2.2 Criteria for Nominal Experiment Design

Since M is a matrix, we need a scalar measure of M for the
purpose of experiment design. In the nominal case, typically
treated in the engineering literature (i.e. when a fixed prior
estimate of θ is used), several measures of the ‘size’ of M
have been proposed which measure the ‘goodness’ of the ex-
periment. Some examples include,

(i) D - optimality [Goodwin and Payne, 1977]
Jd(θ,Φu) := [detM(θ,Φu)]−1 . (3)

(ii) Experiment design for robust control [Hildebrand and
Gevers, 2003a,b, Hjalmarsson, 2005].

Jrc(θ,Φu) := sup
ω
g(θ, ω)HM

−1
g(θ, ω) (4)

where g is a frequency dependent vector related to the ν-
gap [Hildebrand and Gevers, 2003a,b].

Many other criteria have been described in the statistics lit-
erature, such as A-optimality (trM(θ,Φu)−1), L-optimality
(trWM(θ,Φu)−1, for some W ≥ 0) and E-optimality(
λmax(M(θ,Φu)−1)

)
; see Kiefer [1974]. On the other hand,

in the engineering literature, Bombois et al. [2006] proposed a
criterion that specifies the required accuracy to achieve a given
level of robust control performance.
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A common feature of all these nominal experiment design
approaches is that they are aimed at choosing Φu to minimise
a function of the type such as in (3) and (4). Most criteria are
convex in Φu, so in the sequel, we will consider that the chosen
criterion has this property.

2.3 Min-Max Robust Design

A min-max robust design criterion is the basis of our exper-
iment design technique. Specifically, we assume that a-priori
information is available indicating that the parameters can take
any value in a compact set Θ. We also constrain the allowable
set of input signals. Typically in experiment design, a constraint
is imposed on input energy [Goodwin and Payne, 1977, Walter
and Pronzato, 1997, Zarrop, 1979]. Here we define the con-
straint as

S (R+
0 ) :=

{
Φu : R→ R+

0 : Φu is even and∫ ∞
−∞

Φu(ω)dω = 1
}
.

The min-max robust optimal input spectral density, Φoptu , is then
chosen as

Φoptu = arg min
Φu∈S (R+

0 )
sup
θ∈Θ

J(θ,M(θ,Φu)) (5)

where J is an appropriate scalar measure ofM . We assume that
Φoptu exists and is unique; see Rojas et al. [2007]. Notice also
that we allow J to depend explicitly on θ.

2.4 Discrete Approximation to the Optimal Input

Note that (5) is an infinite dimensional optimisation problem.
In order to solve this problem we must approximate (1) by
discretisation of the design space. To this end, we first restrict
the positive support of Φu to a compact interval, say K :=
[ω, ω] ⊂ R+

0 , hence Φu ∈ S (K). Next we approximate the
integral in equation (1) by a Riemann sum. Specifically, we
choose a grid of d + 1 points ωm ∈ [ω, ω] for m = 0, . . . , d
such that ω0 = ω, ωd = ω. Then

M(θ,Φu) :=
∫ ω

ω

M̃(θ, ω)Φu(ω)dω

≈
d−1∑
n=0

M̃(θ, ωn)Φu(ωn)(ωn+1 − ωn) (6)

=
d−1∑
n=0

M̃(θ, ωn)En

where En := Φu(ωn)(ωn+1 − ωn). We can now state the
following discrete semi-infinite convex programming approx-
imation to (5):

min
t∈R, E∈Rd

t

s.t. J

(
θ,

d−1∑
n=0

M̃(θ, ωn)En

)
≤ t, θ ∈ Θ

d−1∑
n=0

En = 1 (7)

En ≥ 0, n = 0, . . . , d− 1.
where ‘s.t.’ denotes ‘subject to’.

3. THE SCENARIO APPROACH

In this section we provide a brief overview of the Scenario
Approach for solving a robust convex problem. Basically the
scenario approach assumes a probabilistic description of un-
certainty, that is, the uncertainty is characterised through a set
∆ describing the set of admissible situations, and a probability
distribution Pr over ∆.

In Section 2.4, it is shown that the min-max optimisation prob-
lem, when converted to a robust convex optimisation program
yields an unwieldy number of constraints, c.f. (7). The underly-
ing benefit of the scenario approach is that it involves selecting a
small number of these constraints to include in the optimisation
problem. Therefore by extracting, at random, N instances or
‘scenarios’ of the uncertainty parameter δ according to some
probability Pr we consider only the corresponding constraints
in the scenario optimisation problem.

Consider the following general Robust Convex Program:

RCP :
min
γ∈Rd

cT γ

s.t. fδ(γ) ≤ 0, δ ∈ ∆.
(8)

where fδ : Rd → R is convex for every δ ∈ ∆. This
robust convex program can be formulated in a scenario-based
approximation.

The scenario based optimisation problem [Calafiore and Campi,
2006] can be stated as: Extract N independent identically dis-
tributed samples δ(1), . . . , δ(N), according to the probability Pr
and solve the scenario convex program:

SCPN :
min
γ∈Rd

cT γ

s.t. fδ(i)(γ) ≤ 0, i = 1, . . . , N.
(9)

It can be seen from (9) that it is a standard finite dimen-
sional convex optimisation problem with a finite number of
constraints. Therefore the computational cost, provided N is
not large, will be significantly smaller than the cost associated
with the min-max optimisation problem.

By considering only a finite subset of constraints, which are
chosen in a random manner, we would like the scenario-based
optimisation program SCPN to provide a solution γopt which,
with high probability, say 1 − β, satisfies all the constraints in
∆, except for a fraction with a small probability, say ε (with
respect to the probability measure Pr). Here β is denoted as
the ‘confidence parameter’ and ε is the ‘violation parameter’.
These variables are user choices which determine the minimum
number of scenarios N to be randomly selected.

Several bounds on the minimum number of scenarios required
have been derived in the literature, see Alamo et al. [2007,
2008], Calafiore and Campi [2006], Campi and Garatti [2007].
To date, the tightest bound has been established in Campi and
Garatti [2007], according to which N has to satisfy

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β. (10)

This relationship establishes an implicit dependence of N on d,
and comes from the following proposition, first established in
Calafiore and Campi [2005]:
Theorem 1. Consider the convex program:

P : min
x∈Rd

cTx

s.t. x ∈ Xi, i = 1, . . . ,m,
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where c ∈ Rd, and Xi, i = 1, . . . ,m, are closed convex sets in
Rd. Also define for every k = 1, . . . ,m,

Pk : min
x∈Rd

cTx

s.t. x ∈ Xi, i = 1, . . . , k − 1, k + 1, . . . ,m.

Let xopt, xoptk be any optimal solutions of P and Pk, k =
1, . . . ,m, respectively. We say that Xk is a support constraint
for P if cTxoptk < cTxopt. Then, the number of support
constraints for P is at most d.

Proof. See Calafiore and Campi [2005].

According to (10), the bound on N is an increasing function
of d. On the other hand, for robust experiment design, the size
of d is related to the discretisation described in Section 2.4.
This appears to give rise to a huge curse of dimensionality,
since in order to obtain a reasonable degree of approximation,
the required number of scenarios might be too large for a
practical implementation. However, in most practical cases, it
is possible to replace d in (10) by a much smaller number,
asymptotically independent of the degree of approximation
made in Section 2.4.

4. SCENARIO-BASED CHANCE CONSTRAINED
OPTIMISATION AND VARIABLE ROBUSTNESS

The basic idea for the scenario based chance constrained opti-
misation is to remove a number of sampled constraints in order
to improve the cost. Obviously, this occurs at the expense of
guarantees of the robustness. It was shown [Campi and Garatti,
2010a] that any algorithm that removes active constraints can
be utilised in the optimisation procedure. Typical constraint
removal algorithms include: the updating the solution by the
removal of all active constraints at a given iteration, as well as
the greedy algorithm which removes only the active constraint
that results in the largest reduction in the cost.

From Campi and Garatti [2010b] we have the following defini-
tion for the constraint removal algorithm.
Definition 1. Let k < A. An algorithm A for constraints
removal is any rule by which k constraints out of a set of N
constraints are selected and removed. The output of A is the
set A{δ(i), . . . , δ(N)} = {I1, . . . , Ik} of the indexes of the k
removed constraints.

With this definition the chance constrained scenario optimisa-
tion problem Campi and Garatti [2010b] can be stated as:

SCPAN,k :
min
γ∈Rd

cT γ

s.t. fδ(i)(γ) ≤ 0, i ∈ {1, . . . , N}
−A{δ(i), . . . , δ(N)}.

(11)

It has been shown in Campi and Garatti [2010b] that a feasible
solution can be found for the chance constrained scenario
optimisation problem with a given probability, 1− β, provided
that the number of scenarios, N , and discarded constraints, k,
fulfill the following condition:

(
k + d− 1

k

) k+d−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β. (12)

Taking the above approach to solve the optimisation problem,
it is possible to construct a performance-violation plot [Campi
and Garatti, 2010a] for the optimal solution. This allows the
user to make decisions regarding the required guarantees and
the performance that can be obtained. The violation parameter
can be obtained [Campi and Garatti, 2010a] by solving the
following equation for εk,

(
k + d

k

) k+d∑
i=0

(
N

i

)
εik(1− εk)N−i =

β

k̄ + 1
, (13)

where k̄ is the number of discarded scenarios.

5. NUMERICAL EXAMPLES

In this section, two examples are presented. Both examples
involve the robust experiment design for a one parameter first
order system [Rojas et al., 2007]. Note that all the optimisation
problems in this section were solved using semidefinite pro-
gramming with the LMI parser YALMIP [Löfberg, 2004] and
the solver SeDuMi.

Consider a model given by H(s) = 1 and

G(s) =
1

s/θ + 1
,

where it is assumed that θ ∈ [0.1, 10]. For this model structure,
the ‘single frequency’ normalised information matrix is given
by

M̃(θ, ω) =
ω2/θ4

(ω2/θ2 + 1)2
.

Consider a criterion of the form

J(θ,M(θ,Φu)) =
1

θ2M(θ,Φu)
.

The reason for multiplying M by θ2 is that M
−1

is a variance
measure and thus [θ2M ]−1 gives relative (mean square) errors.

As shown in Rojas et al. [2007], this robust experiment design
problem can be solved by discretising the interval for θ, and
rewriting the problem as a linear program. This approach is
similar to the one described in Section 3, except for the fact that
in Rojas et al. [2007] a deterministic (in fact, uniform) sampling
of the constraints has been used. In both examples we consider
an interval [0.1, 10] for the support of Φu (which, according to
Rojas et al. [2007], actually contains the optimal spectrum),

5.1 Example 1

The first example we consider is where the optimisation pa-
rameters are chosen as d = 30, ε = 0.01, and β = 10−10, the
bound (12) shows thatN should be at least 8950. In all cases the
distribution Pr is uniform on ln θ. The percentage of discarded
constraints was chosen to be 5% which equates to the removal
of 447 active constraints (or active scenarios).

Figure 1 shows the cost associated with the robust experiment
design for three cases: 1). Scenario approach with all 8950
scenarios, 2). Removal of 337 active constraints (scenarios) by
a non-greedy algorithm, and 3). the greedy approach to the
removal of 337 active constraints. Note that the horizontal lines
of the same type (solid, dot, dash) represent the optimal cost
for the corresponding solutions for the scenario approach with
respect to the above mentioned cases.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

13200



10-1 100 101
10.5

11

11.5

12

12.5

13

13.5

14

C
os
t

Fig. 1. Cost J(θ,M(θ,Φoptu )) as a function of θ, and the
optimal cost, for the three cases in example 1.
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Fig. 2. Input energy, E, for the discretised robust optimal input
for the three cases of example 1.

From Figure 1 it can be seen that for a given number of
constraints (or scenarios) the greedy algorithm obtains the best
performance, but, appears to admit the most violations of the
cost. However, this is a little misleading as careful examination
will show that the greedy algorithm doesn’t violate constraints
on the lower limit of the interval [0.1, 10]. Figure 2 shows
the optimal input signal for the three cases above. It can be
observed that there appears to be only 4 spectral lines in all
cases as predicted in Rojas et al. [2007]. The only difference is
essentially in the re-distribution of the input energy (recall that
there is a constraint on the total input energy).

From Figure 3 we can observe the tradeoff based on the variable
robustness algorithm between performance and violations. It
should be noted that the violation plot is an upper bound on the
probability that a violation will occur. The star line in Figure 3
represents the cost associated with the non-greedy removal of
active constraints (scenarios). It can easily be seen from this
figure that the greedy algorithm (dotted line) will, in general,
provide the best improvement in performance overall, based on
the number of active constraints removed.

5.2 Example 2

In this example we consider the optimisation parameters, d =
30, ε = 0.07, and β = 10−7, the bound (12) shows that
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Fig. 3. Performance-Violation plot for example 1
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Fig. 4. Cost J(θ,M(θ,Φoptu )) as a function of θ, and the
optimal cost for Example 2.

N should be at least 1075. In all cases the distribution Pr
is uniform on ln θ. The percentage of discarded constraints
was chosen to be 10% which equates to the removal of 107
active scenarios. Figure 4 shows the progression for this case
as active scenarios are removed by the greedy algorithm. As
the algorithm progresses it can be seen that the cost is reduced,
however the number of violations increase.

Figure 5 shows the tradeoff between performance and viola-
tions when we have a smaller number of scenarios, as compared
to Example 1, and we discard a higher percentage of these. Fig-
ure 6 illustrates the redistribution of input energy when active
constraints are removed by the greedy algorithm.

6. CONCLUSION

This paper has examined the robust optimal experiment design
problem based on a scenario approach to optimisation. In par-
ticular it investigated the use of ‘variable robustness’ as a means
of quantifying the performance versus guarantees tradeoff. This
is achieved by removing active constraints from the optimi-
sation problem whilst evaluating the associated cost. Plotting
this cost versus the number of constraints removed on the
same graph as the violation parameter vs constraints removed
provides a means to judge the relative tradeoff. Two examples
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Fig. 5. Performance-Violation plot for example 2
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Fig. 6. Input energy, E, for example 2, with 20, 40, 60, 80 and
100 active constraints removed.

are provided which provide insight into the applicability of this
approach in experiment design.
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J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004. Available
from http://control.ee.ethz.ch/˜joloef/yalmip.php.
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