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Abstract: A fundamental quantity of the solution of an optimal control problem is the value
function, i.e., the optimal cost-to-go function. In the general case, the function is not known
exactly, but need to be approximated numerically. Most approaches to numerical approximation
of the value function follow a procedure of three steps: first, the original continuous problem
formulation is fully discretized; second, the discretized finite optimal control problem is solved by
a shortest-path algorithm, and as third step, the solution is projected back from the finite space
onto the continuous state space by using an interpolating function. This paper investigates the
differences of discretization schemes and interpolating functions in this context. The performance
of the computed approximations is evaluated in terms of an a-posteriori error, which is obtained
from the approximating value functions. The convergence of the approximations to the true value
function is proved for all considered schemes for the case that the discretization parameters are
decreased to zero.
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1. INTRODUCTION

Dynamic programming is a powerful approach to the
computation of static feedback laws for general nonlin-
ear systems, which render the closed loop trajectories
(approximatively) optimal with respect to a given cost
functional. Except for special cases, like e.g. linear systems
with quadratic costs in an infinite horizon setting, the
value function of the optimal control problem cannot be
computed analytically but has to be approximated numer-
ically. While different approximation schemes have been
proposed, the question of which scheme is preferable with
respect to the approximation error is still largely open –
the objective of this paper is to contribute to clarification
of this question.

One method being relevant for the work presented here,
is the one in Falcone (1987) and in González and Tidball
(1991b) for the approximation of the value function for a
discounted infinite horizon optimal control problem. The
method uses a one-step Euler forward scheme for time dis-
cretization and a regular grid for state space discretization,
where the grid defines a mesh of simplices covering the
state space. For value function approximation, a function
is defined that piecewise linearly interpolates between the
values in the grid nodes constituting a simplex. The dis-
cretized system is interpreted as a controlled Markov chain
for which the approximation is obtained by value or policy
iteration. As an alternative approach, an undiscounted
entry (exit) time optimal control problem was solved by a
set oriented sampled-data framework in Grüne and Junge
(2008). The sampled-data formulation allows the usage of
higher order time discretization schemes like for exam-
ple Runge-Kutta solvers. The interpolating function was

chosen to be piecewise constant, and the fully discretized
problem is equivalent to a deterministic shortest path
problem on a graph, which can be solved by a Dijkstra-like
algorithm. Such an algorithm permits a fast calculation of
the discrete value function compared to value or policy
iteration. The advantage in computation time is payed for
by a generally lower approximation quality of piecewise
constant functions compared to piecewise linear approxi-
mators.

In this work, the approximation quality and the com-
putation time of different methods are investigated in
comparison. The quality of the approximation is measured
by an a-posteriori error, which specifies the difference be-
tween the sampled-data value function and the computed
value function. The paper compares (and illustrates for
an example) a one-step Euler forward scheme to Runge-
Kutta methods of order three and five for time discretiza-
tion. These alternatives are combined with piecewise linear
and piecewise constant interpolation functions. The con-
vergence of the different schemes is proved in a unified
framework – previous results do not cover all the consid-
ered combinations. The presented approach follows ideas
used in Kreisselmeier and Birkhölzer (1994); Cardaliaguet
et al. (1998) and Grüne and Junge (2008) which respect
to the fact that the state space discretization is modeled
as bounded perturbation of the dynamics.

The paper is organized as follows: After some preliminar-
ies, the considered finite time optimal control problem is
introduced, and the discrete-time as well as the perturbed
variants are formulated. Subsequently, the convergence of
the value function for both variants to the one of the
original system are shown for decreasing approximation
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parameters. In Sec. 5, the fully discrete problems are for-
mulated for a sampled state space, and the relation to the
discrete time perturbed system is derived. The a-posteriori
error is introduced in Sec. 6 and then evaluated (together
with the computation time) for the different methods using
a numerical example. Section 8 concludes the paper.

2. PRELIMINARIES

Throughout the paper, the following notation is used:

• ||x || := (x Tx )1/2 denotes the Euclidean norm of x ∈
R

n .
• ◦S , ∂S , S , S c , and coS denote the interior, the

boundary, the closure, the complement, and the con-
vex hull of the set S .

• B(x̄ , r) := {x ∈ R
n | ||x − x̄ || < r} denotes the open

ball centered at x̄ with radius r . Let S be a set, then
B(S , r) := ∪x∈SB(x , r).

• d(x ,S ) := inf x̄∈S ||x − x̄ || is the minimum distance
from x to S , while d(S∗,S ) := infx∈S∗ d(x ,S ) de-
notes the minimum distance between two points in
the sets S and S∗.

• Given h ∈ R
+, the truncation operator ⌊⌋ : R → R is

defined by ⌊t⌋ := max{hi | hi < t , i ∈ N}.
• The identity function in R

n is denoted by idn .

Definition 1. Given a nonempty set S ⊂ R
n with bound-

ary ∂S , let a unit vector p be an exterior normal to S at
x ∈ ∂S if there exists a ball outside S centered at x + tp
for some t > 0, where the ball touches S in x :

B̄(x + tp, t) ∩ S = {x}.

The set of all unit vectors in x is denoted by P(x ). 2

3. THE OPTIMAL CONTROL PROBLEM

The considered control system is given by the function
f : R

n × U → R
n with the input space U ⊂ R

m . Let
U denote the space of measurable functions over R+

0 with
values in U . Given an initial state x ∈ R

n and an input
function ν ∈ U , the trajectory of the system x (t) is the
solution of the initial value problem

ẋ (t) = f (x (t), ν(t)), x (0) = x

at time t and is denoted by ϕ(t , x , ν) := x (t). ϕ is also
referred to as the flow of the continuous dynamics f .

A1: It is assumed that f is uniformly continuous, bounded,
and Lipschitz-continuous in its second argument, i.e.,
Lf ,Mf ∈ R

+ exist, such that for all x , x̄ ∈ R
n and u ∈ U

||f (x , u)− f (x̄ , u)|| ≤ Lf ||x − x̄ ||, ||f (x , u)|| ≤ Mf 2

The terminal set O ⊂ R
n specifies the set, where the

system is driven to. It defines implicitly the time horizon
of the optimal control problem.

A2: It is assumed that O = ◦O, the boundary ∂O is
compact, and the set of exterior normals is nonempty:
P(x ) 6= ∅, ∀x ∈ ∂O.

Furthermore, some assumptions on the controllability of
the system at the terminal set boundary are needed. A3:
It is assumed that µ ∈ R

+ exist such that

∀x ∈ ∂O, ∀p ∈ P(x ) : inf
u∈U

f (x , u) · p < −µ. 2

The entry time in O (or exit time from Oc) of (1) from
x ∈ R

n under the control ν ∈ U is defined by

τ(x , ν) :=

{

∞ if {t |ϕ(t , x , ν) ∈ ∂O} = ∅

min{t |ϕ(t , x , ν) ∈ ∂O} otherwise.

The costs along the system trajectory comprises the run-
ning costs l : Rn × U → R

+ and terminal costs g : Rn →
R

+. The total cost functional is defined as

J (x , ν) :=






∞ if τ = ∞
∫ τ(x ,ν)

0

l(ϕ(t , x , ν), ν(t))dt + g(ϕ(τ, x , ν))) if τ < ∞.

Regarding the costs functions the following is assumed.

A4: Let Ll ,Lg ,ml , Ml ∈ R
+ with Lg ≤ ml/Mf exist, such

that for all x , x̄ ∈ O

||g(x )− g(x̄ )|| ≤ Lg ||x − x̄ ||, 0 ≤ g(x )

and for all x , x̄ ∈ R
n and u ∈ U

||l(x , u)− l(x̄ , u)|| ≤ Ll ||x − x̄ ||, ml ≤ l(x , u) ≤ Ml

is true. 2

The value function v : Rn → R
+
0 ∪ {∞} for the entry time

optimal control problem is obtained by

v(x ) := inf
ν∈U

J (x , ν).

A fundamental property, used throughout the paper, is the
continuity of the value function, which is ensured by the
theorem below.

Theorem 2. Assume (A1)-(A4). The value function v is
continuous on {x ∈ R

+ | v(x ) < ∞}.

Proof. The proof follows from Propositions 3.3 ii), 3.4,
and 3.7 in Bardi and Capuzzo-Dolcetta (1997), Chapter
IV. �

4. TIME DISCRETIZATION AND PERTURBATION

The numerical computation of the value function requires
a discretization of the continuous optimal control problem.
This section analyzes the time discretization in terms of a
sampled-data system and its perturbation.

4.1 Sampled-Data Approximation

In a first step, the optimal input function is restricted to
lie in the set of piecewise constant functions over R+

0 with
values in U . Given h ∈ R

+ as the step size, the set of
control functions is defined by:

Uh := {ν ∈ U | ν(t) = ν(hi), ∀t ∈ [hi , h(i + 1)), i ∈ N0}.

Thus, any input function νh ∈ Uh is completely character-
ized by a sequence (ui)i∈N0

with νh(hi) := ui .

The decisions of a controller are now restricted to times
ti := hi with i ∈ N0. The system’s trajectory at ti is
determined by a finite difference equation with the right
hand side obtained by

fh(x , u) := ϕ(h, x , ν), ν(t) = u, ∀t ∈ [0, h).

The discrete time control system associated to fh repre-
sents a sampled-data system. The trajectory (xi)i∈N0

ini-
tialized at x ∈ R

n by the initialization function oh := idn
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under the control sequence (ui) ∈ U N0 is given by the
iteration

xi+1 = fh(xi , ui), x0 = oh(x ).

The sampled-data flow function ϕh is defined such that
xi = ϕh(i , x , (ui)) holds for all i ∈ N

+
0 . The purpose of the

initialization function oh in the flow definition is clarified
in the next section, when perturbed sampled-data systems
are considered.

Likewise, the one-step running costs lh are computed by

lh(x , u) :=

∫ h

0

l(ϕ(t , x , u)), ν(t))dt , ν(t) = u, ∀t ∈ [0, h).

The Lipschitz-constants for fh and lh are bounded by
Lfh ≤ eLf h and Llh ≤ Lle

Lf h .

The entry time of the sampled-data system, from the
initial state x ∈ R

n under the control sequence u ∈ U N0 ,
is given by

τh(x , νh) :=

{

∞ if {i |ϕh(i , x , νh) ∈ O} = ∅

min{i |ϕh(i , x , νh) ∈ O} otherwise.

The sampled-data version of the cost functional results in

Jh(x , νh) =
τh(x ,νh)−1

∑

i=0

lh(ϕh(i , x , νh), νh(i)) + g(ϕh(τh , x , νh))

and the corresponding value function in

vh(x ) := min
ν∈Uh

Jh(x , ν).

In the next theorem the difference between the original and
the sampled-data value functions v and vh is estimated on
a sub-level set Kc , obtained by

Kc := {x ∈ R
n | v(x ) ≤ c}.

Theorem 3. Let f , l , g , O be givne according to (A1)-(A4)
and c ∈ R

+ such that Kc 6= ∅. For any ǫ ∈ R
+, there

exists h ∈ R
+ such that the following inequality holds for

all x ∈ Kc :

||v(x )− vh(x )|| ≤ ǫ.

Before proving the theorem, the reader is reminded of a
lemma by González and Tidball (1991a).

Lemma 4. Given f , l , according to (A1)-(A4), let ϕ̃ denote
the flow for the extended continuous system fl(x , u) :=
(f (x , u) × l(x , u)) and ϕ̃h the corresponding flow of the
sampled-data system. There exists K ∈ R

+ such that for
any x ∈ R

n , ν ∈ U , and h ∈ R
+, a control sequence

νh ∈ Uh exists that satisfies the inequality

||ϕ̃(t , x , ν)− ϕ̃(t , x , νh)|| ≤ K eLf th1/2. ♦

Proof. See Lemma 4.3 in González and Tidball (1991a). �
Proof of Theorem 3. i) If x ∈ O vh(x ) = g(x ) = v(x ).
Thus, x ∈ Kc\O is considered, and an input function
ν ∈ U is chosen, such that holds: J (x , ν) ≤ v(x ) + ǫ1.

ii) An extended ǫ-optimal control function

νǫ(t) :=

{

ν(t) 0 ≤ t ≤ τ

u τ < t ≤ τ + ǫ2

with τ := τ(x , ν) is constructed. The input u ∈ U and
ǫ2 ∈ R

+ are chosen such that x (τ + ǫ2) ∈ ◦O. Due to (A3)
such an input with ǫ2 (arbitrary small) always exists.

The abbreviation τǫ := τ(x , ν)+ǫ2 is used in the following.

iii) A neighborhood δx ∈ R
+, along with a time step

h ∈ R
+, and ǫ3 ∈ R

+ are chosen such that for all
x̄ ∈ B(x , δx )

B(ϕ(⌊τǫ⌋, x̄ , νǫ), ǫ3) ⊆ O

with the bound

||ϕ(⌊τǫ⌋, x̄ , νǫ)− ϕh(⌊τǫ⌋, x̄ , ν
ǫ
h)|| ≤ K eLf ⌊τǫ⌋h1/2 ≤ ǫ3

holds. The input function νǫh is chosen according to
Lemma 4.

iv) Let δ(x ) := min{δx , δ̄x}, where δ̄x is chosen, such that
for all x̄ ∈ B(x , δ̄x ) ⇒ ||v(x̄ )− v(x )|| ≤ ǫ holds. Then, the
value functions satisfy for all x̄ ∈ B(x , δx ) the following
estimate:

vh(x̄ ) − v(x ) ≤ vh(x̄ )− v(x̄ ) + ||v(x̄ )− v(x )||

≤

∫ ⌊τǫ⌋

0

lh(x̄h(t), ν
ǫ
h(t))− l(x̄ (t), ν(t))dt

+ g(x̄h(⌊τǫ⌋))− g(x̄ (τ)) +Mlǫ2 + ǫ1 + ǫ

≤ K eLf ⌊τǫ⌋h1/2 + Lg ||x̄h(⌊τǫ⌋)− x̄ (τ)||

+Mlǫ2 + ǫ1 + ǫ

≤ Lg(||x̄h(⌊τǫ⌋)− x̄ (⌊τǫ⌋)||+ ||x̄ (⌊τǫ⌋)− x̄ (τ)||)

+K eLf ⌊τǫ⌋h1/2 +Mlǫ2 + ǫ1 + ǫ

≤ Lg(K eLf ⌊τǫ⌋h1/2 +Mf ǫ2)

+K eLf ⌊τǫ⌋h1/2 +Mlǫ2 + ǫ1 + ǫ

≤ (1 + Lg)K eLf ⌊τǫ⌋h1/2 + (LgMf +Ml)ǫ2 + ǫ1 + ǫ.

The estimate from Lemma 4 is used to bound the in-
tegral expression in the first inequality and to estimate
||x̄h(⌊τǫ⌋)− x (⌊τǫ⌋)|| in the third inequality.

Then, ǫ1, ǫ2, and h, can be chosen, such that for all
x̄ ∈ B(x , δ(x )), the inequality vh(x̄ )− v(x̄ ) ≤ 2ǫ holds.

v) The upper bound for the reverse inequality is uniformly
given by v(x )− vh(x ) ≤ (Ml + LgMf )h. It is the maximal
cost of one step.

vi) The compactness of Kc follows from the continuity of
v . Thus, there exists a finite cover

Kc ⊂
m
⋃

i=0

B(xi , δ(xi)).

Let hx denote the time step associated to every x ∈ Kc

(as in the steps i-iv)), Now, with h := mini∈{0,...,m}{hxi},
for any x ∈ Kc , there exists xi with x ∈ B(xi , δ(xi)) and

||vh(x )− v(x )|| ≤ ||vh(x )− v(xi)||+ ||v(xi)− v(x )|| ≤ 3ǫ.

�

The following functional results from the dynamic pro-
gramming principle:

vh(x ) = (1)
{

min
u∈U

{lh(oh(x ), u) + vh(fh(oh(x ), u))} if x ∈ Kǫh\O

g(oh(x )) if x ∈ O.

This equation will be used again in Section 6 to determine
the error of the different approximation schemes with
respect to vh .

4.2 Perturbation

The right hand side of the sampled-data system and the
one-step costs are often obtained by numerical simulation
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when the exact solutions of the integrals are not known.
Thus, an inaccurate computation of fh and lh is consid-
ered by introducing disturbance terms. Furthermore, the
perturbations model the finite representation of the state
space e.g. obtained from a grid-like partitioning.

The computational errors are modelled by the perturbation
functions pf : R

n × U → R
n , pl : R

n × U → R,
pg : Rn → R, and po : Rn → R

n . The data of the optimal
control problem results in

o
p
h := idh + po , f

p
h := (idn + po) ◦ (fh + pf ),

l
p
h := lh + pl , gp := g + pg .

The trajectory (xp
i )i∈N, the entry time τph , the cost func-

tional J
p
h , and the value function v

p
h of the perturbed

sampled-data system are obtained identical to the corre-
sponding quantities of the sampled-data system, only that
o
p
h , f

p
h , l

p
h , gp instead of oh , fh , lh , g are used in the

definitions.

Note that the usual approach for a perturbed optimal con-
trol problem is the definition of the value function in amin-
max formulation Huang et al. (2005); Grüne and Junge
(2008), or Bardi and Capuzzo-Dolcetta (1997) Chapter
VIII. As this contribution focuses on the approximation
quality of the value function, this is not considered here. In
consequence, in order to obtain a stabilizing feedback from
the value function, a rather fine state space discretization
is necessary.

Let the bounds of the perturbation functions be denoted
by

sup
x∈Rn

||po || ≤ b1, sup
x∈Rn ,u∈U

||pl || ≤ b2,

sup
x∈Rn ,u∈U

||pl || ≤ b3. sup
x∈Rn

||pg || ≤ b3.

Theorem 5. Let f , l , g , O according to (A1)-(A4), and
Kc 6= ∅. For every ǫ ∈ R

+, there exist h and bi , i ∈
{1, 2, 3}, such that for all x ∈ Kc :

||v(x )− v
p
h (x )|| ≤ ǫ.

Proof. The proof follows by similar arguments as the
proof of Thm. 3 with the following distance estimates
of the trajectories (xi)i∈N and (xp

i )i∈N, i ∈ N: ||xi −
x
p
i || ≤ i(b1 + b2) + b1. �

When a numerical integration scheme with consistency of
order m is used to obtain f

p
h , the perturbation function

pf is bounded by b2 = Khm
i for some K ∈ R

+. hi are the
inter-sample integration steps with

∑

hi = h.

For example for using the forward Euler scheme with one-
step per sample time h, it holds that: b2 = LfMf h

2/2.

The input set U is assumed to be finite in the following.
The error which results from this simplification is also
representable by pf and pl . Due to the uniform continuity
of f and l , the error can be made arbitrary small by
increasing the number of samples in U .

5. COMPUTATION OF THE VALUE FUNCTION

The domain of calculation R ⊂ R
n is spanned by the set of

N sample states or nodes denoted by Ξ . The set of nodes
ΞO := Ξ ∩ O and ΞR := Ξ ∩ Rc represent the terminal
set O and the boundary set ∂R respectively.

The discretization parameter k associated with the set Ξ
is determined by

k := sup
x∈R

min
ξ∈Ξ

||x − ξ||.

The value function for the fully discretized system is com-
puted based on the state space discretization. Depend-
ing on the chosen interpolation scheme, the algorithm to
calculate the value function differs. In the following, a
piecewise constant interpolation and a linear interpolation
are analyzed.

5.1 Piecewise Constant Interpolation

The piecewise constant interpolation is based on a Voronoi
partition ∆ obtained by the node set Ξ . Each node ξ ∈ Ξ
is associated to a partition element δξ of ∆.

A graph G = (Ξ ,E ) is constructed from the Voronoi
partition. The set of edges is given by

E := {(ξ, u, ξ̄) ∈ Ξ × U × Ξ | fh(ξ, u) + pf (ξ, u) ∈ δξ̄}.

and the costs along the edges are lph (ξ, u). The costs of the
terminal nodes ξ ∈ ΞO ∪ ΞR are set to g(ξ) for ξ ∈ ΞO

and to ∞ for ξ ∈ ΞR.

The value function V based on the graph G is computed
by solving a deterministic shortest path problem for all
ξ ∈ Ξ .

The consideration is restricted to the set ΞK := {ξ ∈
Ξ |V (ξ) < ∞}. It is known, see for example Bertsekas
(1995), that the value function V : ΞK → R

+ satisfies the
functional equation

V (ξ) =

{

min
(ξ,u,ξ̄)∈E

{lph (ξ, u) + V (ξ̄)} if ξ ∈ ΞK\ΞO

g(ξ) if ξ ∈ ΞO.

The computational complexity of computing V is of order
O(|Ξ |2) using the Dijkstra algorithm and can be reduced
to O(|Ξ | log(|Ξ |+ |E |)) using a binary heap.

The projection of V (ξ) back onto the continuous state
space is defined for the set

K0
Ξ := {x ∈ δξ | δξ ∈ ∆, V (ξ) < ∞}

by the function v0
Ξ : K0

Ξ → R
+. Given x ∈ δξ, the value

simply follows to:

v0
Ξ (x ) := V (ξ).

5.2 Linear Interpolation

The linear interpolation is based on a triangulation of the
nodes into a set of simplices Γ. Each state x , covered by
the triangulation, may be written by a linear combination
of the nodes ξ0, . . . , ξn spanning the simplex γξ0,...,ξn ∈ Γ
containing x . The coefficients of this linear combination
are referred to as barycentric coordinates.

Let [λi(ξ, u)]i=1,...,N denote an N dimensional vector con-
taining the barycentric coordinates of f ph (ξ, u). Since all
λi(ξ, u) ≥ 0 and

∑

i λi(ξ, u) = 1, it is possible to interpret
the barycentric coordinates as transition probabilities of a
controlled Markov chain. The states of the chain are given
by the set Ξ and the input set by U . See the monograph
Kushner and Dupuis (1992) Chapter 4 and 5 for a detailed
treatment of the Markov chain approach with piecewise
linear function approximation.
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The value function V of the Markov chain is computed by
solving a stochastic shortest path problem. The standard
algorithms solving a stochastic shortest path problem are
value - and policy iteration, see Bertsekas (1995), Vol II,
Chapter 2.2.

On the set ΞK := {ξ ∈ Ξ |V (ξ) < ∞}, the value function
V : ΞK → R

+ satisfies the functional equation

V (ξ) =










min
u∈U

{lph (ξ, u) +
N
∑

i=0

λi(ξ, u)V (ξi)} if ξ ∈ ΞK\ΞO

g(ξ) if ξ ∈ ΞO.

Under the assumption that no self transitions exist, the
complexity of value iteration is of order O(|Ξ |2|U |) and
for policy iteration O(|Ξ |2 + X |Ξ ||U |), where X is the
number of policy improvement iterations. In special cases,
when there exist only transitions to states with lower cost-
to-go, Dijkstra like methods can be used to calculate the
value function (see Tsitsiklis (1995)).

The projection of V back onto the continuous state space
is defined for the set

K1
Ξ := {x ∈ γξ0,...,ξn | γξ0,...,ξn ∈ Γ, ∀ξi : V (ξi) < ∞}

by: v1
Ξ : K1

Ξ → R
+. Given x ∈ γξ0,...,ξn and the barycentric

coordinates λ0, . . . , λn with x =
∑n

i=0 λiξi , the value
v1
Ξ (x ) is determined by

v1
Ξ (x ) :=

n
∑

i=0

λiV (ξi).

5.3 Perturbation and State Space Discretization

The projection of the continuous system onto a finite
state space can be understood as a perturbation which
is bounded by the discretization parameter k .

Definition 6. Given the sets K0
Ξ and K1

Ξ along with the
value functions v0

Ξ and v1
Ξ (according to the derivation

in Sec. 5.1 and 5.2 for a grid Ξ ), candidate perturbation
functions

p0 : K0
Ξ → R

n and pi : K
1
Ξ → R

n , i ∈ {1, 2}.

are defined in the following.

For x ∈ K0
Ξ , let δξ ⊂ K0

Ξ denote the partition element
containing x ∈ δξ, such that one obtains:

p0(x ) := ξ − x .

For x ∈ K1
Ξ , let γξ0,...,ξn ⊂ K1

Ξ denote the partition ele-
ment containing x ∈ γξ0,...,ξn . Let ξmin, ξmax ∈ {ξ0, . . . , ξn}
denote the nodes for which v1

Ξ (ξmin) ≤ v1
Ξ (ξj ) and

v1
Ξ (ξmax) ≥ v1

Ξ (ξj ) holds for all ξj ∈ {ξ0, . . . , ξn}. The
perturbation functions are defined by

p1(x ) := ξmin − x and p2(x ) := ξmax − x . 2

The next theorem relates the value functions of the per-
turbed sampled-data system to the value functions of the
fully discretized system.

Theorem 7. Given f
p
h , lph , g

p , O, and R under the condi-
tions of Theorem 5. The sets K0

Ξ , K
1
Ξ and functions v0

Ξ ,
v1
Ξ , p0, p1, and p3 from Definition 6 are considered.

Let v
pi

h , i ∈ {0, 1, 2} denote the value functions for the
perturbed sampled-data systems, defined by o

pi

h := idn +
pi , f

pi

h := (idn + pi) ◦ (fh + pf ). The equations

∀x ∈ K0
Ξ : v

p0

h (x ) = v0
Ξ (x ) (2)

∀x ∈ K1
Ξ : v

p1

h (x ) ≤ v1
Ξ (x ) ≤ v

p2

h (x ). (3)

are satisfied, with the functions pi ≤ k , pl ≤ Llk , pg ≤
Lgk .

6. ERROR MEASUREMENT

The error estimates used in the previous convergence
proofs are conservative upper bounds and thus are not
immediately useful in the performance evaluation of the
value function approximation.

Motivated by the formulation for vh in the Equation (1),
the error due to the discretization of the problem is
reinterpreted in terms of a new error function e : Rn → R.

Given the set KΞ and the function vΞ , referring to K0
Ξ

or K1
Ξ and v0

Ξ or v1
Ξ respectively, the following functional

equation is satisfied:

vΞ (x ) = (4)
{

min
u∈U

{lh(x , u) + e(x ) + vΞ (fh(x , u))} if x ∈ KΞ \O

g(x ) + e(x ) if x ∈ O.

The second quantity which is examined in the numerical
tests is related to the descent property of the value function
with respect to the optimal trajectories. The control law
ua
h : KΞ → U is defined by

ua
h (x ) := argmin

u∈U

{lah (x , u) + vΞ (f
a
h (x , u))}. (5)

The dynamics f ah and one-step costs lah are obtained by
the numerical simulation which is used in the computation
of the value function (the true quantities fh and lh are
unknown for the controller). In case the inequality

lh(x , u
a
h (x )) + e(x ) > 0 (6)

holds on KΞ , the value function is a Lyapunov function of
the closed loop system since

vΞ (x ) > vΞ (fh(x , u
a
h (x )))

follows. Thus, the stability of the control system under the
control law (5) can be deduced in this case.

In general, the error function e is unknown. Thus, in the
numerical tests, the error function e is evaluated at some
sample states η ∈ KΞ . The sampled errors e(η) are used
as indicators of the performance of the closed loop system
with respect to optimality and stability.

7. NUMERICAL TESTS

The various discretization and interpolation methods are
applied to compute the value function of an inverted
pendulum with quadratic cost functions. The dynamics
is given by

ẋ1 = x2, ẋ2 = −0.01x2 + 9.81 sin(x1) + u,

where x1 and x2 are the angle and angular velocity. The
cost functions are set to

g(x ) = 0.1x 2
1 + 0.1x 2

2

l(x , u) = 0.1x 2
1 + 0.1x 2

2 + 0.01u2.

The domain of computation is chosen to R := [−π, π] ×
[−6, 6] and the terminal set to O := [−0.2, 0.2]2. The state

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

8611



space of the first coordinate is unified at ±π and the input
space is given by U = [-3 3]. The box constraints on the
input prevent a direct swing-up of the pendulum.

7.1 Computational Setup and Results

Three time discretization schemes are considered: the one-
step Euler forward method (E) and two Runge-Kutta
methods of order three (RK3) and five (RK5). The set
of different examined time steps is given by

h ∈ {0.5, 0.2, 0.07, 0.03}.

For the Runge-Kutta methods, the number of intersample
time steps is chosen to 5.

Each time discretization method is combined with the
piecewise constant (PC) and piecewise linear (PL) inter-
polation function approximations. For both methods a
uniform gird is used with grid node distances

k ∈ {0.1, 0.05, 0.02, 0.01}.

A standard value iteration method is applied to solve the
stochastic shortest path problem, and the Dijkstra algo-
rithm with a binary heap is used to solve the deterministic
shortest path problem. The input space is approximated
by 21 equidistantly distributed samples for all conducted
computations.

The computation times of the value function, applying the
various combinations of h and k , are illustrated in Figure 1.
The plots show the overall time, i.e., the time needed for
computing the discretized system as well as the time spend
for solving the shortest path problem. The legend of the
plots, listing the method assigned to each symbol, is given
in the following table.

△ E/PC � RK3/PC ♦ RK5/PC
N E/PL � RK3/PL � RK5/PL

The results are plotted only if the area KΞ , from which
the terminal set is reachable for the discretized system, is
greater then 50 % of R.

Results in terms of the error, cf. (4), are illustrated in
Figure 2. The plots display the mean of the absolute error
e(η) evaluated in the center η = ξ + k/2 of each partition
element of the uniform grid. Matlab’s variable step size
solver ode45 with error control parameter AbsTol and
RelTol set to 10−10 is used to compute fh , lh in (4).

The descent property of the value function vΞ , cf. (6), is
also evaluated at the center η of each partition element.
Figure 3 shows the percentage of partition elements for
which (6) holds. The circle around the symbols in the
plots indicate that the control law (5) stabilizes the upper
position of the pendulum initialized at x0 = [π, 0]

T

. The
closed loop system is simulated again by using Matlab’s
solver ode45 with the same settings as above.

All the computations are performed on an AMD Phenom
II X4 920 processor with 4GB memory.

7.2 Interpretation and Discussion

To conclude this section, the presented results and the
experimental observations are discussed.
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Fig. 1. Computation times in seconds.
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Fig. 2. The plot shows the mean of the absolute error e(η)
sampled at the center η of each partition element of
the uniform grid.

The most obvious observation is the immense reduction of
the computation time due to the use of the Dijkstra al-
gorithm (see Fig. 1). Although, there exist improved algo-
rithms to solve stochastic shortest path problems, a speed
up comparable to the Dijkstra algorithm’s performance
is not expected. In particular, for the piecewise constant
approach, most time of the solution is spend in building
the graph, while for the piecewise linear approach, most
time is consumed for the value iteration. Since the number
of iterations is proportional to the maximum length of a
path in the Markov chain, the computation time increases
with decreasing time step h.
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Fig. 3. Percentage of the partition elements on which (6)
holds.

The reduction of the computation time has already been
observed in Grüne and Junge (2005). However, the more
interesting detail is that the accuracy of approximation of
the two interpolations schemes to not differ considerable.

The second pertinent observation is the poor performance
of the Euler solver compared to the Runge-Kutta schemes.
While it is slightly better in terms of the computation
time, the test trajectory initialized at x0 converged only
twice to the origin when the piecewise linear function
approximation has been used. For the piecewise constant
function approximation no combination of k and h resulted
in a pendulum swing up under the control law (5). This
supports the theoretical results with respect to optimiza-
tion based synthesis of stabilizing feedbacks reported in
Grüne and Nešić (2003).

The third observation, is the loss of the stabilizing property
of the control law when the time step h is chosen too
small for the Runge-Kutta solvers (see Figure 3). Although
a slightly better behavior is observed in this respect for
the piecewise linear function approximations, the methods
fail to swing up the pendulum for the cases k = 0.1,
h ∈ {0.07, 0.03} and k = 0.05, h = 0.03.

8. SUMMARY AND CONCLUSION

This work described the numerical approximation of the
value function for entry time optimal control problems.
The convergence of the approximation to the true value
function was shown for the case that the discretization
parameters are decreased to zero. The convergence proof
considered a perturbed sampled data time discretization
and two function approximation methods – a piecewise
constant and piecewise linear approximation.

The performance of three different solvers of the sampled
data one-step dynamics was compared for an example.
Each solver was combined with one of the two function

approximation methods. The best performance with re-
spect to a balance between computation time and error
measurements was obtained for a Runge-Kutta solver of
order three in combination with the piecewise constant
function approximation.
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