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Abstract: An approach for the optimal control of both velocity and torque split of a parallel
hybrid electric vehicle with traffic preview is presented in this paper. The optimal controller
is analytically derived using Pontryagin’s Minimum Principle. The optimal velocity and torque
split trajectories developed are then repeatedly recalculated in a receding horizon fashion over
drive cycles to assess the potential fuel saving with varying lengths of the traffic preview.
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1. INTRODUCTION

In a climate of increasing concern about fuel economy and
greenhouse gas emissions, hybrid electric vehicles (HEV)
are increasingly popular with consumers and manufactur-
ers alike. The superior fuel economy of an HEV is achieved
with added functionality provided by an electric motor,
including engine shutoff at idle and regenerative braking,
but without sacrificing range as in the case of pure electric
vehicles.

The control strategy that determines the combination
between engine and motor at different stages of a trip
is well known to significantly impact the overall fuel
consumption, while controlling velocity in a trip without
compromising the arrival time, may fully exploit potential
fuel savings of an HEV. The optimal control of these two
aspects requires future traffic information a priori, which
may be obtained using a network of vehicular telemetry
devices as discussed in (Zhuang et al., 2008).

Pisu and Rizzoni (2007) applied HEV torque split con-
trol with telemetry information, based on the equivalent
consumption minimisation strategy (ECMS) proposed in
Sciarretta et al. (2004). Other approaches included model
predictive control (MPC), in which dynamic programming
technique is used to solve the finite horizon problem as in
(Back et al., 2004) and (Johannesson and Egardt, 2007).
The latter work showed up to 2% fuel improvement over
a flat road, but by only addressing torque split, the ap-
proaches did not fully maximise the potential fuel saving
for an HEV.

More recently, Manzie et al. (2007) demonstrated fuel
saving by managing a vehicle’s velocity using an essen-
tially ad-hoc approach given limited traffic information
ahead and Hellstrom et al. (2010) studied fuel saving
with velocity control for a heavy truck by utilising road
topography. It was indicated that there is further potential
fuel economy improvement in an HEV velocity control in
conjunction with torque split control.

Building on this prior work, Kim et al. (2009) integrated
the torque split and velocity control of an HEV over a flat

road profile using nonlinear MPC. The work showed 6.6%
fuel economy improvement relative to a benchmark rule-
based controller with traffic preview as short as 5 seconds.
However the computational burden for solving the nonlin-
ear optimisation was a major drawback, and highlighted
a need for computationally efficient algorithms. A similar
problem was tackled by van Keulen et al. (2010) for a
hybrid electric truck in the highway driving scenario with
varying road topography. However, the authors treated
velocity control and the torque split control as decoupled
problems, and the optimality as a combined problem was
not discussed.

As a computationally effective alternative to Kim et al.
(2009), Pontryagin’s minimum principle (PMP) is consid-
ered in this work, to find the analytical solution for the fuel
optimal torque split and velocity control of an HEV in the
presence of limited traffic preview and using simplifying
assumptions. To solve this problem, two-stage optimal
control (Tomiyama, 1985) is used. The formulation is then
applied on a high fidelity vehicle model over a drive cycle
with limited preview horizon, ensuring the same arrival
time as the traffic, but avoiding unnecessary depletion of
battery’s charge level.

2. A CONTROL ORIENTED HEV MODEL

An HEV is a complex dynamic system with highly nonlin-
ear subcomponents. A simpler mathematical model which
attempts to capture the key HEV characteristic is adopted
for the controller development in this work and is pre-
sented in this section.

2.1 Vehicle and Engine Dynamics

Single dimensional forward motion is considered for mod-
elling the vehicle dynamics. The external dynamics of the
vehicle velocity, v(t) and position d(t) are thus given as

d

dt
v(t) =

1

m
[F (t)− c0 − c2v(t)2] (1)

d

dt
d(t) = v(t) (2)
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where c0 and c2 are positive constants representing drag
coefficients.

The total applied force F (t) is constrained to the range,
F ∈ [−Fb,max, Fd,max], where Fb,max and Fd,max are pos-
itive numbers representing maximum braking and driving
forces, respectively. Depending on the nature of applied
force, the vehicle state is classified into three possible
phases, namely, acceleration phase, deceleration phase or
coasting phase. When F > 0, the vehicle is denoted to
be in an acceleration phase, where the total driving force
comes from the combination of the engine and electric
motor. When F < 0, the vehicle is denoted to be in a
deceleration phase, braking with a combination of friction
and regenerative braking. When F = 0 the vehicle is said
to be in a coasting phase, where the velocity changes only
due to frictional and aerodynamic effects.

During the acceleration phase, the engine and motor com-
bine to produce the driving force, which is proportionally
related to the total driving torque.

F (t) = c3τtotal(t) (3)

where c3 is a constant reflecting fixed gear ratio.

The torque split ratio u is defined as the ratio of the torque
produced by the engine, τeng to the total torque required
for the vehicle, τtotal, and following from (3), it is the ratio
of the force produced by the engine, Feng to the total force
required:

u(t) =
τeng(t)

τtotal(t)
=
Feng(t)

F (t)
(4)

where the range of u is u ∈ [0, umax]. The parallel HEV
mode of operation during the acceleration phase is defined
based on the value of u:

• u = 0: pure electric mode
• 0 < u < 1: hybrid mode
• u = 1: pure engine mode
• 1 < u < umax: recharging mode

During deceleration, the clutch disengages the engine from
the drive line. The electric motor alone remains engaged
to recuperate energy and thus acts as a load torque. Hence
u is undefined during the deceleration phase.

The following assumption is now made regarding the
engine used in the HEV model described in (1) - (4):

Assumption 1. The fuel consumption of the vehicle is
linearly proportional to the engine power output.

A similar assumption has also been used by Guzzella and
Sciarretta (2007) for modelling conventional vehicles, and
ignores any nonlinearity in engine efficiency maps. By
extending the assumption to hybrid vehicles in this work,
the implication is that during pure electric mode, coasting
or braking operation the engine is assumed to be turned
off rather than idling. Furthermore, as no gearing exists
in the model (3), it is clear that the fuel consumption will
rise monotonically with vehicle velocity.

2.2 Electrical System

In modelling the electrical system of the vehicle, the
following assumption is made:

Assumption 2. The electricity consumption of the vehicle
is linearly proportional to the electric motor power output.

This is equivalent to Assumption 1, in that any nonlinear-
ities in the motor efficiency maps are ignored during the
acceleration phase. Furthermore, it implies that there is
no dependency on the rate of change of battery state of
charge due to the state of charge level. While this latter
point is not true across the entire operating range of the
battery, it will be reasonable if the fluctuations in state of
charge are small, as is typically the case.

Under Assumption 2, the dynamics of the battery state of
charge during the acceleration phase may be represented
by:

d

dt
q(t) = −c4(1− u(t))F (t)v(t) , F ≥ 0 (5)

where c4 is a positive constant that reflects motor/generator
efficiency. It is worth noting that (5) applies for 0 < u ≤
umax. During the deceleration phase, only the fraction of
braking power captured regeneratively, R, can accumulate
the state of charge since the engine disengages from the
driveline. In this work R is assumed constant throughout
all braking events, leading to the state of charge dynamics
during deceleration being represented by:

d

dt
q(t) = −c4RF (t)v(t) , F ≤ 0 (6)

3. PROPOSED OPTIMAL CONTROLLER

Given that the problem of determining optimal velocity
and torque split is a multivariable optimization problem
and there are constraints associated with the HEV states,
Pontryagin’s Minimum Principle (PMP) represents a good
candidate methodology to establish an analytical solution.
However, the two phases of the battery state of charge
dynamics caused by acceleration and deceleration, as per
(5) and (6), imply that standard form of Pontryagin’s
technique is not applicable in the case at hand, and an
alternative approach is sought. To this end, a two stage
Pontryagin’s Minimum Principle approach of Tomiyama
(1985) is applied on HEV model (1)-(6) so as to develop a
multivariable optimal controller which minimizes the fuel
consumption over a finite length of traffic preview.
The following assumption is used in ensuing analysis.

Assumption 3. The telemetry provides a limited preview
of the traffic ahead a priori and furthermore is sufficiently
short that the optimal trajectory may be represented using
only two phases separated by a coasting phase.

Limiting the number of phases in the segment to two
allows a two-stage optimal control approach formulated
in Tomiyama (1985) to be applied.

3.1 Review of Two-stage Optimal Control, Tomiyama
(1985)

Consider the state vector, x, whose dynamics over the
period [t0, tf ] change from f1 to f2 at time t1, i.e.

dx

dt
=

{
f1(x,u, t) [t0, t1)

f2(x,u, t) (t1, tf ]
(7)

The cost J for the combined two stages is defined to be:

J(x,u, t, t1) =

∫ t1

t0

L1(x,u, t) dt+

∫ tf

t1

L2(x,u, t) dt (8)
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where L1 and L2 are the integrands of costs of the first
phase and the following phase respectively. The variables
that can be chosen to minimise the cost are the control
vector, u, and the switching time, t1.

The corresponding Hamiltonians Hi for each phase are
given as

Hi(x,p,u, t) = Li(x,u, t)+pT fi(x,u, t), i = 1, 2 (9)

where p is vector of costate variables.

If ∗ is used to designate optimality of a variable, the two
necessary conditions for optimality of a two-stage optimal
problem may be stated as follows:

(1) The optimal control at each stage minimises the
Hamiltonian for the corresponding stage.

min
u1

H1(x∗(t),p∗
1(t),u1(t), t) (10)

= H1(x∗(t),p∗
1(t),u∗

1(t), t), t0 ≤ t < t1

min
u2

H2(x∗(t),p∗
2(t),u2(t), t) (11)

= H2(x∗(t),p∗
2(t),u∗

2(t), t), t1 < t ≤ tf
(2) The costate variables and the Hamiltonian should be

continuous at the switching time t1, i.e.

p∗(t∗−1 ) = p∗(t∗+1 ) (12)

H1(x∗(t∗1),p∗(t∗1),u∗
1(t∗1), t∗1) (13)

= H2(x∗(t∗1),p∗(t∗1),u∗
2(t∗1), t∗1)

3.2 Analysis of Acceleration Phase: F ≥ 0

In order to develop a cost function minimising energy, it is
necessary to introduce a fuel-electricity equivalence ratio,
K, which depends on efficiencies of engine and motor. The
equivalence factor weights the use of electric power against
fuel power. When K is less than one, it follows that electric
energy is favourable relative to fuel and, when K is greater
than one, use of electric energy is penalised.

Assumption 4. The equivalence factor K is constant over
the interval t ∈ [t0, tf ].

In reality, the electric to fuel energy equivalency varies
with engine and motor operating point. However a con-
stant equivalence factor is reasonable for small perturba-
tions from the current operating point, which is consistent
with relatively short trip segments. The value of K may
be refreshed with every new interval.

As a consequence, the cost function during the acceleration
phase, Ja, in a finite time interval [ta, tb] may be written
as the following equation:

Ja(x,u, t) =

∫ tb

ta

u(t)F (t)v(t) +K(1− u(t))F (t)v(t) dt

(14)

The Hamiltonian for the acceleration phase is formed by
substituting (1), (2), (5) and (14) into (9).

Ha(x,u,p, t) =u(t)F (t)v(t) +K(1− u(t))F (t)v(t)

+
p1(t)

m
[F (t)− c0 − c2v(t)2] + p2(t)v(t)

− p3(t)c4(1− u(t))F (t)v(t) (15)

where p1(t), p2(t) and p3(t) are the costate variables.

From (10) a necessary condition for u∗ to be optimal is

Ha(x∗,u∗,p∗, t) ≤ Ha(x∗,u,p∗, t) (16)

and the corresponding dynamics of the costates are:

ṗ1
∗(t) = −∂Ha

∂v
= −u∗(t)F ∗(t)−K(t)(1− u∗(t))F ∗(t)

+
2p∗1(t)c2v

∗(t)

m
− p∗2(t) + p∗3(t)c4(1− u∗(t))F ∗(t) (17)

and the optimal costates p∗2 and p∗3 are constants.

Substituting the Hamiltonian (15) into the inequality (16)
results in the inequality:

u∗(t)F ∗(t)[v∗(t)− σ(t)v∗(t)] + F ∗(t)[σ(t)v∗(t) +
p∗1(t)

m
]

≤ u(t)F (t)[v∗(t)− σ(t)v∗(t)] + F (t)[σ(t)v∗(t) +
p∗1(t)

m
]

(18)

where σ(t) := K − c4p
∗
3(t). Further define the following

transformed co-state variables β1 and β2 as

β1(t) := v∗(t)− σ(t)v∗(t) (19)

β2(t) := σ(t)v∗(t) +
p∗1(t)

m
(20)

Now (18) can be written in terms of u and Fd as:

F ∗(t)[u∗(t)β1(t) + β2(t)] ≤ F (t)[u(t)β1(t) + β2(t)] (21)

F (t) is non-negative since the minimum driving force
applied on the vehicle during acceleration is zero. u(t)
is also non-negative since the engine cannot produce a
negative torque, hence umin = 0. With these non-negative
u and F , decision planes on the switching instances with
respect to β1 and β2 can be deduced.

F ∗(t) = 0, u(t)β1(t) + β2(t) > 0 (22)

F ∗(t) = Fd,max, u(t)β1(t) + β2(t) < 0 (23)

This decision plane is represented graphically in the
costate space by the dotted line in Figure 1 and trajectories
defined by the solutions of (17)-(20).

Since both F (t) and u are non-negative, solving the
inequality (21) leads to the following decision plane which
is represented by the dashed line in Figure 1:

u∗(t) = umin, β1(t) > 0 (24)

u∗(t) = umax, β1(t) < 0 (25)

There is also a singular case when β1(t) = 0 and β2(t) = 0
for t ∈ [ta, tb] and no information can be obtained from the
Hamiltonian inequality. Since β2 is zero and remains zero
in this interval,

β2(t) = σ(t)v∗(t) +
p∗1(t)

m
= 0

β̇2(t) = σ̇(t)v∗(t) + σ(t)v̇∗(t) +
ṗ∗1(t)

m
= 0 (26)

The conditions β1(t) = 0 and β̇1(t) = 0 give σ(t) = 1 and
σ̇(t) = 0. The problem reduces down to a conventional
vehicle problem when travelling in a singular arc, and
the optimal speed of the vehicle is found to be constant
during this period. A detailed analysis using a non-hybrid
vehicle model is found in Stoicescu (1995) and Appendix
I of Guzzella and Sciarretta (2007).
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Fig. 1. Decision planes for optimal inputs during acceler-
ation phase on β1-β2 plane

3.3 Analysis of Deceleration Phase: F ≤ 0

During deceleration, the engine disengages and switches
off, hence there is no power blending between engine and
motor. Therefore the problem is reduced to a single control
variable, the braking force, F . The fuel consumption
problem during this phase can therefore be formulated
as maximising the energy captured through regenerative
braking, which is expressed by the following cost function
to be minimised:

Jd(x,u, t) =

∫ tb

ta

−KRF (t)v(t) dt (27)

subject to the distance requirement and specified final
velocity.

From (27), the Hamiltonian for the decelerating phase is:

Hd(x,u,p, t) =−KRF (t)v(t) +
p1(t)

m
[F (t)− c0 − c2v(t)2]

+ p2(t)v(t)− p3(t)c4RF (t)v(t) (28)

The dynamics of the costate variables are:

ṗ1
∗(t) = −KRF ∗(t) +

2p∗1(t)c2 ∗ v∗(t)

m
(29)

− p∗2(t) + p∗3(t)c4RF
∗(t)

and p∗2 and p∗3 are constants.

Substituting (28) into (16) results in

F ∗(t)β3(t) ≤ F (t)β3(t) (30)

where

β3(t) := −KRv∗(t) +
p∗1(t)

m
+ p∗3(t)c4Rv

∗(t) (31)

From (30) the following result can be deduced,

F ∗(t) = −Fb,max, β3(t) > 0

F ∗(t) = 0, β3(t) < 0 (32)

The optimal inputs for the independent acceleration and
deceleration phases have been found by treating them as
two separate problems and applying Pontryagin’s Mini-
mum Principle. In all cases, the optimal control inputs are
found to be ‘bang-bang’, switching between two extremes.
The switching instance depends on β1, β2 and β3, which
include the unknown costate variables. The result resem-
bles the bang-bang control structure found for the optimal
torque split analysis in Wei et al. (2007).

Fig. 2. Possible optimal velocity trajectories. (a) Accel-
eration followed by deceleration (solid), deceleration
followed by acceleration (dashed). (b) Acceleration
followed by acceleration (solid), deceleration followed
by deceleration (dashed).

The optimal switching time for u∗ and F ∗ can be calcu-
lated numerically solving for the costates while satisfying
boundary conditions on x(0) and x(tf ). However this ap-
proach is a computationally difficult problem.

As a computationally favourable alternative, the shapes
of the optimal input trajectories obtained from the accel-
eration and deceleration phase analysis are used together
with Assumption 3 to develop two-stage optimal control
trajectories over the time horizon corresponding to the
traffic preview length. In conjunction with the boundary
conditions on the states, the next section pursues this
option of determining the optimal trajectory.

3.4 Combined phases with boundary conditions

The optimal control inputs of the individual acceleration
and deceleration phases satisfy conditions (10) and (11),
respectively. Then, the optimal solution to the two-stage
problem is obtained by combining the individual optimal
solutions of Stages 1 and 2 of the two-stage PMP, where
both Stages 1 and 2 can take either acceleration phase or
deceleration phase as per (8). Four two-stage combinations
are possible, as shown in Figure 2. The combination to
obtain the final optimal control trajectories is governed by
the determination of an optimal switching instant t1 such
that optimality conditions (12) and (13) hold.

The determination of t1 in the case at hand is performed by
applying optimal control inputs, obtained in Sections 3.2
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and 3.3, on the HEV model (1)-(6) in conjunction with the
boundary conditions with respect to on velocity, v0 and vf ,
total distance travelled, D, and terminal state of charge,
qf , over a known horizon interval [t0, tf ]. For a given set of
boundary conditions, only one out of the four trajectories
in Figure 2 results in a feasible solution, satisfying all the
boundary conditions. It may be noted that as per (1), the
dynamics of v are completely independent of control u and
state q and therefore the velocity trajectory can be worked
out solely using F ∗ and the boundary conditions.

The resulting velocity trajectory links the two stages via
a coasting phase, which is characterised by F ∗ = 0 from
acceleration and deceleration phases. Clearly, the optimal
switching instant lies in between t1a, t1b which are the
starting and end time of the cruising phase, respectively.
As a result the problem of determining optimal t1 reduces
to that of determining the optimal t1a and t1b such that
the boundary conditions are satisfied. Furthermore, it is
easy to verify the conditions (12) and (13) hold along the
cruising phase implying the two stage optimality of the
resulting solution.

From (24) and (25), it is known that u∗ switches between
umax and umin. Having now determined the velocity pro-
file, it can be used to determine u∗ based on the bound-
ary conditions of the battery state of charge. During the
coasting phase i.e. t ∈ [t1a, t1b], electric energy is neither
being used nor charged, hence the battery state of charge is
constant. The amount of kinetic energy absorbed through
regenerative braking is dependent on the duration of the
deceleration phase. Accounting for the state of charge
increase during the deceleration phase, the switching time
for torque split during the acceleration phase can be ad-
justed to meet qf .

3.5 Application in Receding Horizon

As an HEV equipped with telemetry moves forward with
traffic, telemetry provides a new set of traffic information
at each sampling period. Since telemetry can only sup-
ply limited feed-forward traffic information as stated in
Assumption 3, and as time increments, so too does the
available information, it is natural to update periodically
(based on the update rate of the telemetry) the optimal
control sequences and hence the optimal control trajecto-
ries based on the new traffic information.

Accordingly, the control approach proposed in Section
3.4 is used at each sampling instant to solve a finite
horizon optimal control problem, subject to the constraints
associated with the states (v, d, q) and control inputs
(u, F ). The optimal control trajectories (u∗, F ∗) computed
for a given set of telemetry information are only applied
for the duration of sampling period. When the next set
of the traffic preview information becomes available, the
optimal control trajectories based on new information are
recalculated, and this process is repeated resulting in a
receding horizon control (RHC).

The application of ’bang-bang’ control scheme in prac-
tice is not desirable in the drivability point of view. To
overcome this problem, the controller can be refreshed
at a faster sampling frequency with a low pass filter-

Table 1. High order model parameters

Total weight 1800 kg
Frontal area 2.04 m2

Coefficient of drag 0.33
Engine max. power 110kW
Motor max. power 59kW
Battery open circuit voltage 300V
Battery capacity 25 Ah
Transmission Manual, 5spd
Gear ratios 3.57:2.00:1.33:1:0.75
Engine Downsized GM 3800

Series II L36 engine
Motor 59kW AC induction motor

ing of the control input to obtain a smoother accelera-
tion/deceleration.

4. SIMULATION RESULTS

Simulations are conducted using ADVISOR with teleme-
try preview lengths of up to 30 seconds. A detailed model
of HEV based on a medium-large sized family sedan is
simulated in ADVISOR (Wipke et al., 1999), of which key
vehicle specifications are as in Table 1. In order to simulate
realistic driving conditions, two drive cycles, the US-FTP
and the Australian Urban Drive Cycle (AUDC) are con-
sidered. The vehicle without telemetry has fuel economy
of 7.5 and 7.9 L/100km on each cycle respectively. Each
drive cycle is examined for two different traffic cases: in the
first case the simulated vehicle may overtake surrounding
traffic, which may be considered representative of multiple
vehicles coordinating their velocities. In the second case
overtaking is prevented so as to simulate only the single
vehicle with any preview information, and is modelled by
imposing the constraint Fd,max = Fd,traffic when vehicle
separation is at its minimum allowable limit.

An example of the control trajectories in traffic following
the US-FTP cycle with a preview length of 15 second and
overtaking prevented is shown in Figure 3.

Despite being based on the reduced order model of As-
sumptions 1 and 2, the proposed controller with telemetry
improves fuel economy for the detailed model over a drive
cycle by adjusting its velocity as shown in Figure 3(a).
The velocity is controlled with only three choices of forces
which are Fd,max, F = 0, and −Fb,max. Smoothing of
velocity is evident, and the vehicle exhibits an earlier
deceleration and long coasting to avoid a complete stop
and accelerates together with the traffic following coasting.

Although Assumption 2 does not hold in this simulation,
the battery state of charge at the end of the trip returns to
near the initial value of 0.7, as shown in Figure 3(b). This is
achieved with the torque split command switching between
umin and umax. The frequency of switching between umin

and umax, i.e. engine on-off behaviour, can be constrained
in real application as mentioned in Sciarretta et al. (2004)
but has not been undertaken here. The battery state of
charge is maintained near the desired level by constraining
qf at the end of each horizon. One possible drawback is
that this method does not use much of the available energy
stored in battery at this short preview. Alternatively, this
may indicate the battery size could be decreased.
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Fig. 3. Results from simulation of proposed control in
traffic following the US-FTP cycle with 15 second
traffic preview, position is constrained. (a) Optimal
velocity profile (solid) and US-FTP cycle (dotted).
(b) Battery state of charge fluctuation.

The simulations were repeated for telemetry preview
lengths ranges from 0 to 30 seconds for the two overtaking
scenarios and the results are shown in Figure 4. Note
that due to Assumption 2 no longer being valid, the final
battery charge is often different to its initial condition
and consequently is converted to a fuel-equivalent energy
in L/100km. The average engine and motor efficiency
throughout the drive cycle are used in the correction.

Figure 4 shows that there is clear fuel economy improve-
ment as longer previews are applied. In both US-FTP
and AUDC cycles, greater fuel saving is observed when
the constraint on overtaking is not imposed. The margin
of improvement is greater at short previews, and the im-
provement is less as the preview gets longer. The general
decreasing trend is the same for other drive cycles, however
the percentage of improvement depends on the frequency
of start-stop behaviour present in the original cycle and
the level of velocity smoothing acquired.

Simulations performed in ADVISOR have shown the im-
provement in fuel economy using the proposed controller
over a range of preview lengths considered. Even though
the controller is based upon the simple control oriented
model presented in Section 2, uniform improvement in
fuel economy is observed throughout the range of preview
lengths. The proposed controller is shown to be insen-
sitive to the modelling inaccuracy, and is a computa-
tionally effective alternative numerical optimisation based
approaches.
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