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Abstract: Although anaerobic digestion is a widely applied technology, the process is not yet fully 
understood because of its high complexity, and an optimization of the current technology is still needed. 
The design and control of digester systems is still generally performed by rule-of-thumb since no tools 
are currently available for an accurate evaluation of performance. The application of mathematical 
models is a prerequisite to improve digester performance and hence much attention is focused on the 
development of accurate models. This paper critically reviews the current state of the art about 
mathematical modeling of anaerobic digestion models. Moreover, the main trends in optimization of the 
existing models and the development of new models are discussed. 
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1. INTRODUCTION 

The production of a huge amount of waste sludge is an 
inevitable drawback of waste activated sludge processes, and 
sludge handling and disposal already accounts for up to 50% 
of total treatment costs of wastewater purification (Neyens et 
al. (2004)). Anaerobic digestion is of particular interest in 
sludge treatment since it has the ability to reduce the overall 
amount of biosolids to be disposed by circa 40%, while 
producing an energy rich biogas (55-70% CH4) that can be 
valorized energetically (Appels et al. (2008)). Other 
beneficial features include the stabilization of the sludge, the 
inactivation and reduction of pathogens, and the 
improvement of sludge dewaterability (Appels et al. (2010)). 
Although this technology has been applied for several 
decades, there is still a lack of fundamental knowledge on the 
mechanisms of anaerobic digestion, what is mainly due to the 
very high complexity of the process. As a result, the design of 
digester systems is still generally performed by rule-of thumb 
(De Baere (2006)).  

The microbial communities responsible for the digestion 
process represent a “biological factor” that poses some 
particular challenges for modeling approaches. Specifically 
for microbial processes is the fact that the performance of a 
micro-organism is not solely dependent on the organism 
itself, but also on the environment it resides in. Due to 
changes in the digestion system, (e.g. feed composition, 
alkalinity, thermal disturbances, pollutants or accumulation 
of intermediate or end-products), the activity of certain 
communities may vary widely between not and fully active. 
This is reflected in models by the values of certain 
parameters that can vary greatly according to the specific 
application or even during the course of an experiment. One 
must realize that a full and completely deterministic model is 
an almost utopian idea because (i) the number of identified 

species in an anaerobic digester culture is very high (at least 
over  100 according to Deublein & Steinhauser (2008)), (ii) 
evolves dynamically between different levels of activity and 
(iii) some are not obligatory but facultatively anaerobic. An 
additional problem in modeling anaerobic digestion is the 
availability of data needed for system identification. The 
number of independent components found in a digester can 
be extremely large, and measurements are often time 
consuming and costly. Also, only a limited number of 
process variables can be measured on-line, which makes 
automated control even more troublesome. To overcome 
these monitoring problems, the use of software sensors can 
be very useful. These techniques will be dealt with in Section 
4.  

There is a general agreement in the literature that the 
application of mathematical models is a prerequisite to 
improve digester performance and hence much attention is 
currently focused on the development of accurate models. 
This paper critically reviews the current state of the art 
digestion models. Moreover, the main trends in optimization 
of the existing models and the development of new models 
are discussed. 

 

2. DESCRIPTIVE MODELING 

2.1  Early models 

The first anaerobic digestion models already date back to the 
end of the sixties, early seventies with the models proposed 
by Andrews (1969) and Andrews & Graef (1971) which 
consider the methanogenesis performed by acetoclastic 
methanogenesis as the rate-limiting step and already include 
inhibition by substrate accumulation described by Haldane 
kinetics. Other initial models such as Gosset & Belser (1982) 
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and Pavlostathis & Gosset (1986) consider the hydrolysis 
step as rate-limiting for the digestion of activated sludge. 
Further development led to more realistic models that 
consider the process as a chain of reaction stages performed 
by distinct microbial populations: three according to Hill and 
Barth (1977) (solubilization of organics, acidogenesis and 
methanogenesis) and four according to Mosey (1983) 
(acidogenesis, acetogenesis and two methanogenic reactions). 
The latter was further elaborated by (i) Rozzi et al. (1985) 
who divided the system into a gaseous and liquid phase and a 
biological system, and (ii) Costello et al. (1991) and Perrier 
& Dochain (1992) who included the degradation of glucose. 
A flaw in these early models was that they considered the 
substrate to be homogenous or synthetic. Therefore, other 
models were also developed for specific substrates such as 
liquid manure (e.g. Hill (1982) and Angelidaki et al. (1993)), 
or sewage sludge (e.g. Siegrist et al. (1993)). Based on 
extensive experimental work, Angelidaki et al. (1999) 
proposed a general applicable model in which the substrate is 
expressed in terms of carbohydrates, proteins, lipids and 
intermediate degradation products. A more elaborate review 
on the history and evolution of model development lies 
beyond the scope of this paper and the reader is referred to 
Tomei et al. (2009), Appels et al. (2008) and Lübken et al. 
(2010). 

2.2  Anaerobic Digestion Model No. 1 (ADM1) 

The diversity and variety in models developed so far required 
a convergent action to consolidate the various approaches 
found in the different existing models. With this objective, 
the IWA Task Group on Mathematical Modeling of 
Anaerobic Digestion Process, founded in 1997, developed the 
Anaerobic Digestion Model No. 1 (ADM1), as a unified base 
for modeling of anaerobic digestion (Batstone et al. (2002)). 
The used nomenclature, units and model structure are 
consistent with the existing anaerobic modeling literature and 
the Activated Sludge Models ASM1, ASM2, and ASM3 
(IWA Task Group on Mathematical Modeling for Design and 
Operation of Biological Wastewater Treatment (2000)) 
Implementations of ADM1 are available in Matlab and 
Simulink but also in specific water related simulation 
software such as WEST and Aquasim. 

ADM1 describes the reactions occurring in anaerobic 
digestion, by assuming a perfect mixture. The components 
are expressed in terms of their Chemical Oxygen Demand 
(COD) (g O2/g sludge). The model includes biochemical as 
well as physicochemical processes. The biochemical reaction 
pathway is depicted in Fig. 1 and includes: (i) an extracellular 
disintegration step converting composite particulate matter 
into carbohydrates, lipids and proteins, (ii) an extracellular 
enzymatic hydrolysis step converting the degradation 
products into their chemical building blocks, i.e. 
monosaccharides, long chain fatty acids (LCFA) and amino 
acids (AA), (iii) acidogenesis or fermentation of the building 
blocks into hydrogen, acetate and volatile fatty acids (VFA), 
i.e. propionate, butyrate and valerate, (iv) acetogenesis of 
VFA to acetate, (v) acetoclastic and hydrogenotrophic  
methanogenesis.  All biochemical extracellular steps are 
assumed to be of first order, while the intracellular 

biochemical reactions use Monod-type kinetics for substrate 
uptake. Substrate uptake in the intracellular biochemical 
reactions is also accompanied with biomass growth.  Death of 
biomass is represented by first-order kinetics with the dead 
biomass considered as a composite particulate matter. 
Inhibition of the biological activity by pH (all groups), 
hydrogen (acetogenes) and free ammonia (acetoclastic 
methanogenes) is included. 
 

 
Fig. 1. The reaction paths described in ADM1 (Batstone et al. 
(2002)) 
 
ADM1 is expressed in 32 ordinary differential equations 
(ODEs) of which 12 describe the dynamical behavior of the 
particles and biomass, 10 ODEs the soluble components, 2 
ODEs the inorganic nitrogen and carbon, 2 ODEs the 
cation/anion-balance in the liquid and 6 ODEs the acid-base 
reaction to determine the pH and the concentration of ionized 
forms of VFAs, NH3 and CO2. 

2.3  Applications and extensions of ADM1 

Due to the experience and prestige of the collaborators in the 
Task Group and due to the numerous successful validations, 
the ADM1 is considered as the current state-of-the art model. 
Applications are found in many occasions, e.g. digestion of 
grass silage (Koch et al. (2010)), co-digestion of municipal 
waste with activated sludge (Derbal et al. (2010)), olive mill 
wastewater with solid waste (Fezzani & Ben Cheikh (2008)) 
and blackwater (Feng et al. 2006). The application of ADM1 
for the prediction of larger quantities of hydrogen seems to be 
more problematic (Peiris et al. (2005)).  

A notable application of ADM1 is found in the Benchmark 
Simulation Model No 2 (BSM2) (Jeppsson et al. (2007)) in 
which control strategies are tested on a simulated water 
treatment plant facility comprising a primary and secondary 
clarifier, a nitrogen removal activated sludge system, an 
anaerobic digester, a thickener, a dewatering system and a 
storage system. The implementation of ADM1 is somewhat 
adapted: pH inhibition is described by continuous functions 
instead of threshold values, the nitrogen and carbon 
imbalance is straightened out and the fast evolving hydrogen 
state is implemented as an algebraic equation rather than a 
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differential one (Rosen et al. (2006)).  The imbalance of N, P, 
and organic in ADM1 is also discussed by De Gracia et al. 
(2006).  

Some efforts are made to include dispersion effects in the 
mixture in a distributed parameter model. Batstone et al. 
(2004a) for instance modeled a biofilm digestion system and 
Mu et al. (2008) an upflow anaerobic sludge bed (UASB) 
using a 1D discretisation.  2D and 3D discretisations were 
studied by Picioreanu et al. (2005).  

Albeit ADM1 is a state-of-the-art model which has been 
validated in numerous applications, it also serves as a 
platform for further model elaboration. Some adjustments 
have been made specifically for certain substrates. Examples 
are the extensions on the degradation of phenols for olive 
mill wastes by Fezzani et al. 2009) and the inclusion of 
expressions for ethanol oxidation in winery wastewater, by 
Batstone et al. (2004b).  Other extensions are more 
fundamental. Fedorovich et al. (2003) extended the model 
with sulfate reduction to hydrogen sulfide.  Batstone & Keller 
(2003a) considered precipitation of CaCO3, applicable as a 
template for other precipitation reactions.  Isomeric forms of 
butyrate and valerate were included by Batstone et al. 
(2003b). Ramirez et al. (2009b) discussed the rather simple 
kinetic first order expression for disintegration and 
hydrolysis. A Contois-model is used for the disintegration, 
accompanied with a Hill-function for ammonia inhibition of 
acetoclastic methanogenes instead of a non-competitive 
function. Palatsi et al. (2010) made some suggestions to 
overcome the fact that inhibition by VFA is not included in 
ADM1. Finally, to address to the rather poor applicability of 
ADM1 in non-methanogenic systems, Penumathsa et al. 
(2008) made the stoichiometry for glucose degradation 
variable and dependent on the organic acid concentration. 

Although large steps are made in the descriptive modeling of 
anaerobic digestion, a lot of issues remain. For instance the 
kinetics involving disintegration and hydrolysis are greatly 
simplified in ADM1 and most follow-up articles by assuming 
first order kinetics. The kinetic constant is then determined 
by calibration and acts as a summary of all the complex 
processes that are involved in those two steps.  This approach 
is recommended by Batstone et al. (2002) as the default 
method and has been applied numerous times. However, 
Batstone et al. (2002) acknowledge that the use of surface-
based kinetics gives better results, although they argue that 
results for first order-kinetics are comparable and are 
similarly good. This is rather striking as in almost all 
applications of ADM1 the disintegration and hydrolysis 
parameter results are considered the most important and 
subject to calibration by fitting to model to data. The majority 
of the other parameters are assumed constant to a reference 
value, given by the literature or by separate research.  

Another problem is the development of accurate models for 
the anaerobic digestion of solid waste. This topic is even 
more challenging, as some issues arise that are not dealt with 
in the aforementioned models, mostly concerning the effects 
of mixing of the reaction mixture.  For instance, Vavilin & 
Angelidaki (2005) have investigated the co-digestion of 

municipal household solid waste and digested manure in 
mesophilic conditions. They discovered that in situations 
where the methanogenic step is rate-limiting, a gentle mixing 
regime is beneficial for the methane production as in that 
case spatial methanogenic zones can develop. In case of 
hydrolysis as rate-limiting, an intense mixing regime leads to 
the highest degradation. 

As already stated in the introduction, caution has to be made 
on what can be expected from these descriptive models. 
When properly calibrated, they can be powerful tools for 
prediction. Especially, since the development of ADM1 and 
its descendants, the quality of descriptive models has stepped 
up to a new level. However, the increased descriptive power 
of the models comes with a price, namely the model 
complexity. Due to the many chemical, biological and 
physical effects to be taken into account, the number of 
parameters included model has increased significantly, e.g. 
90 for ADM1 including the initial concentration of biomass. 
Calibration of ADM1 follows in most cases the following 
procedure: (i) data from an anaerobic experiment are 
gathered, (ii) a few parameters are selected for calibration, 
mostly concerning the disintegration or hydrolysis; other 
parameter values are taken from the literature, mostly from 
Batstone et al. (2002), and (iii) the selected model parameters 
are fitted to the data. A problem that arises with this 
procedure is the issue of identifiability, i.e. is it possible to 
define a unique set of values to the parameters to obtain the 
best fit. Due to the large number of parameters and the high 
model complexity, the answer is probably negative, with 
large confidence intervals accompanying the parameter 
values as a consequence. In all, the evolution to more 
complex models results in a paradoxical situation: the more 
correct the models are and the better they fit for prediction 
purposes, the harder it is to uniquely define the parameter 
values and make precise predictions, i.e. with small 
confidence intervals. 

 

3. MODELS FOR CONTROL 

With the technique of anaerobic digestion fully growing into 
its maturity and with large-scale plants already built, the 
development of efficient controllers has become a necessity. 
However, again due to the “biological factor” the realization 
of controllers is not as easily performed as in normal process 
industry since some major issues hamper a straight-forward 
implementation. Firstly, anaerobic digestion is a highly non-
linear process that requires complex models for an adequate 
description (see above). Finding an appropriate control law 
for such processes is not easy. One should also realize that 
not all dynamics behind the process are fully understood, 
resulting in situations in which the digester will behave in an 
unexpected manner. A third issue is the feed of the digester. 
This is mostly some sort of waste and, as a consequence, a 
constant and non-polluted inflow in the digester cannot 
always be guaranteed.  Another issue is the difficulty of 
obtaining sufficient and qualitative on-line measurement. 
This problem is discussed in Section 4. Finally, only a rather 
limited number of control actions is possible. These are 
mostly restricted to controlling the dilution rate or adding a 
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certain substrate to bring the digester into a ‘safe-mode’.  
Because the digestion is performed by microbial processes, 
caution has to be made that the controllers do not lead to 
conditions in which the organisms wither or are being 
washed-out.  

Two objectives are distinguished in control strategies for 
anaerobic digestion: stable operation and maximizing the 
yield for products such as hydrogen, ethanol, organic acids, 
or a biogas with sufficient caloric value.  Because an 
anaerobic digestion culture can be rather fragile, until now 
most research efforts focused on maintaining stable operating 
conditions.  

In general, distinction can be made between model free 
controllers and model-based controllers.  

3.1  Model- free controllers 

Model free controllers are controllers which ignore all 
knowledge on the process, but rather rely on retrieved data. 
This approach has the advantages that the implementation 
and accompanying calculations are rather simple.  The first 
and simplest model free controllers are PI or PID controls. 
These are used to maintain the digester at a certain set point 
by adding for instance bicarbonate (Marsili-Libelli & Beni 
(1996)) to preserve the alkalinity, or altering the feed inflow 
(von Sachs et al. (2003)). A more advanced method of 
maintaining the stability of the reactor is through the use of 
fuzzy-controllers as described by e.g., Estaben et al. (1997). 
Another interesting approach is to develop an artificial neural 
network, trained on sufficient amount of data and use this for 
optimization purposes. Holubar et al. (2002) have applied 
this reasoning on the optimization of methane production.  
Obviously, the major disadvantage of model free controllers 
for both stabilization and optimization is the large amount of 
data they need, both online or offline. 

3.2  Model-based controllers 

 Albeit the descriptive models presented in Section 2 are 
capable of presenting reasonable predictions on the output, 
they are not appropriate for control purposes. Due to their 
complexity they have an arguable identifiability and are hard 
to calibrate completely. Additionally, due to their complexity, 
the mathematical implementation is not straight-forward as is 
the derived automatic controller. As a result, most model 
based controllers are built on relatively simple models with 
an important example the two step (acidogenesis-
methanogenesis) mass balance model of Bernard et al. 
(2001a). In this fully structurally identifiable model, the 
uncharted biological complexity is located in dedicated 
terms, namely the reaction rates. Its general model is of the 
form 

FQDxxKrx +−−= )(dtd    (1) 

with  

[ ]TCSSZXX  2121     =x     (2) 

where X1 and X2 are the concentrations of the acidogenic and 
methanogenic biomass, Z the total alkalinity (mmole/L), S1 
(g/L) and S2 (mmole/L) the amount of organic substrate and 

volatile fatty acids respectively, C the inorganic carbon 
(mostly bicarbonate) (mmole/L), D the dilution matrix for the 
components (in case of biofilm reactors the dilution rate of 
biomass will differ from the dilution rate of other 
components), K the yield matrix, Q  the gaseous outflow, F 
the liquid feed and r(x) the reaction rates. The reaction rates 
are proportional to the associated biomass and are expressed 
as Monod and Haldane kinetics for the acidogenic and 
methanogenic reaction. The flow rates of CO2 and CH4 as 
well as the pH-value are described by algebraic equations. 

Although relatively simple, the model performed very well. 
Due to its simplicity, all parameters are identifiable (although 
the variability in the kinetic parameters was quite high due to 
the rough approximations of the biological reactions and 
changing feed conditions). It was also noticed that steady-
state calibrated models, performed adequately in predicting 
transient behavior. 

The model of Bernard et al. (2001a) is widely used in model-
based controllers, especially by the Laboratoire de 
Biotechnologie de l’Environnement LBE-INRA under the 
supervision of J.-P. Steyer which is a progenitor of 
considerable research effort on the subject of control of 
anaerobic digesters. Steyer et al. (2006) have reviewed some 
of the most interesting research conducted on model-based 
controllers. For a more detailed description we refer to the 
respective papers, listed in Table 1. 

Table 1.  Review on model-based controllers (partially 
retrieved from Steyer et al. (2006)). 

Linear model based controllers 
Disturbance accommodating control  
(Harmand et al.(2000)) 
Non parametric adaptive control  
(Hilgert et al. (2000)) 
Non linear control with constraints handling  
(Antonelli et al. (2003)) 

Non-linear model based controllers 
Adaptive control  
(Bernard et al. (2001b)) 
Interval based non linear control  
(Alcaraz-Gonzalez et al. (2005)) 
Robust non linear control  
(Mailleret et al. (2004)) 
Model predictive control  
(Aceves-Lara et al. (2010)) 

 
3.3  Developing more simple models 

As already pointed out, the descriptive models described in 
Section 2 are too complex to apply for control purposes. 
However, if these models can be simplified while they still 
remain reasonably good predictors, they can form the basis 
for successful model-based controls. The reduction in model 
complexity can be based on knowledge of the process. For 
instance, some state-variables can be considered constant and 
can be excluded from the process (steady-state assumption). 
Also a pseudo-steady-state approximation can be applied to 
simplify matters. It is in that case assumed that 
concentrations of components that are rapidly consumed are 
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essentially constant and approximately equal to zero. If this 
reasoning of eliminating the fast evolving state variables is 
continued, the result would be a rate-limiting step model in 
which the dynamic behavior of the model is described by a 
single reaction.  Because this approach, in most cases, 
presents no dynamic information on the variables defined in 
the scope of the control, it is not always desirable. 

Bernard et al. (2006) and Bernard & Bastin (2005) propose 
an alternative way for developing simple models. In this 
approach, it is assumed that the process can be represented by 
a general mass balance model: 

  )()( ttdtd vKrx +=     (3) 

with x={x1, x2, …xn} the concentration of the various 
components inside liquid  medium and the term v(t) 
representing the net balance between inflows, outflows and 
dilution effects. The reaction rates are given by the vector r(t) 
= {r1(t), r2(t), …rp(t)}. The matrix K is the pseudo-coefficient 
matrix and links together the different components and 
reactions, and essentially represents the structure of the 
reaction network. In some cases the reaction network is 
already determined, i.e. K is known. In other cases no 
assumptions are made on the reaction network, i.e. K is 
unknown. In both situations, the aim is to obatin a simple 
model in which a small number of reactions are included that 
represent the main mass transfer within the process. This is 
achieved by using data obtained from the process. Consider a 
matrix U (n x N) obtained from a set of N estimates of u(t): 

[ ])()...()( 21 Nttt uuuU =     (4) 

These estimates could be data, measured from experimental 
work or can be “virtual data” generated by an investigated 
complex process. The number of reactions included in the 
reduced model is determined by performing a principal 
component analysis on U. In theory, the number of reactions 
necessary to reproduce the data set equals the number of non-
zero eigenvalues. However, in practice none of the 
eigenvalues will be zero so the method consists in selecting 
the p first principal axis that explains a total variance in the 
data larger than a fixed threshold. Note that the technique is 
only valid if the number of state variables equals or exceeds 
the rank of W, with W the matrix containing the reaction 
rates w(ti): 

[ ])()...()( 21 Nttt wwwW =    (5) 

Bernard et al. (2006) have applied the method both for data 
from a pilot-scale anaerobic digester and virtual data 
generated from the ADM1 model. The first set of data led to 
the identification of 1 reaction that accounts for 82.3% of the 
variability in the data while the second led to the 
identification of 1 or 2 reactions, explaining 87.1% and 
98.7% respectively. Following the identification of the 
reaction network, expressions for the reaction rates are 
proposed. 

This approach of a reduced pseudo-stoichiometric matrix is 
ideal for simplifying a model, while still retaining a large 

portion of its predictive characteristics. However, care must 
be taken as the method is also prone to some perturbations as 
a result of the simplified model (1), measuring noise, 
numerical implementation and time-alignment of the data. 
Finally, one must not expect to describe all the variables that 
were expressed in the full model by the reduced models, This 
can be circumvented by assuming a fixed ratio in reaction 
products, albeit this is rather susceptible to errors.  

 

4. SOFT SENSORS 

A major problem in modeling and control of anaerobic 
digestion is the availability of data. For the majority of the 
components that are described by common models such as 
ADM1 (Batstone et al. (2002)), off-line methods exist. 
However, these are costly in both money and time. 
Additionally, some variables that are essential for a realistic 
description of the system are virtually immeasurable.  e.g. 
biomass determinations. If the model only includes one type 
of biomass, which could be estimated by, e.g., the turbidity of 
the sludge, but devices or measurement protocols that can 
distinguish between different kinds of microbial organisms 
are practically impossible due to the enormous cost that 
accompanies them. A common way to calculate the unknown 
parameters is to consider the initial biomass as a parameter 
and determine it by calibration on measured data.  

Albeit off-line composition measurements are satisfactory for 
model, calibration and validation, effective control of the 
digestion process requires on-line measurements. Available 
methods are gas chromatography, Total Organic Carbon 
(TOC) analyzers, Titrimetric sensors, UV- and FT-IR-
spectrometers to determine alkalinity, TOC, dissolved CO2 
and H2, VFA-concentrations, acetate, bicarbonate, nitrogen 
and phosphorus (Steyer et al.  (2006)). An approach to extend 
this number of on-line measurements is the use of software 
sensors, i.e. softsensors or inferential sensors.  Softsensors 
can be categorized in model-based softsensors and data-based 
softsensors.  

Data-based softsensors apply a black-box approach for 
estimating the unknown measurements with the most popular 
techniques being: (i) Principle component regression (PCR) 
(Martens & Naes (1992)) (ii) Partial least squares (PLS) 
(Wold et al. (2001)), (iii) Artificial neural networks (ANN) 
(Bishop (1995)), (iv) Neuro-fuzzy systems (Jang & Sun  
(1995)) and (v) Support Vector Machines (SVM) (Vapnik 
(1999)). Successful applications of data-based softsensors are 
found in Holubar et al. (2002) (ANN). As for the weaknesses 
of these softsensors: Nomen est omen; data-based softsensors 
need data for model training. As already pointed out, these 
data can be costly to acquire or unavailable. In the rest of this 
section, model-based softsensors are elaborated. 

Four types of model-based softsensors are found in current 
research: (i) extended Kalman filters (EKF), (ii) Extended 
Luenberger observers (ELO), (iii) adaptive observers, and 
(iv) asymptotic observers (AO). 
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4.1  Extended Kalman filters 

Consider the general continuous non-linear system model (6) 
describing the state variables x of which frequent discrete-
time measurements zk of the output yk are taken. 

)())(),(( tttdtd wuxfx +=    (6) 

kkk vxgy += )(     (7) 

where f the state-transition model, g the observation model, k 
the index of discrete time step tk, w(t) the process noise due 
to the mismatch between the model and the reality and v the 
measurement noise. Column vectors are denoted in bold. 
Both the process noise as the measurement noise are 
considered multivariate Gaussian noises with covariances 
Q(t) and Rk respectively: 

))(,(~)( tt Q0w      (8) 
),(~k kR0v      (9) 

In the EKF, the prediction of the unknown state is done by an 
alternating sequence of a prediction phase and an update 
phase. In the prediction phase, a first estimate of the states 
x̂ and its covariance error matrix P are made, based on the 
values of the states in the previous time step.  

))(),(ˆ(ˆ )1( ttdtd uxfx =     (10) 
)()()()()()1( tttttdtd T QFPPFP ++=   (11) 

)(),(ˆ
)(

tt
t

ux
xfF ∂∂=     (12) 

In the update phase, the predictions of the states and 
covariance error matrix on time step k, )1(ˆ kx )1(

kP are corrected 
by the measurements.  

1)1()1( )( −+= k
T
kkk

T
kkk RGPGGPK    (13) 

))ˆ((ˆˆ )1()1()2(
kkkkk xgzKxx −+=    (14) 

)1()2( )( kkkk PGKIP −=     (15) 

)1(ˆ kk xxgG ∂∂=      (16) 

An application of a Kalman Filter for anaerobic digestion is 
found in the research of Aubrun et al. (2001). 

An implementation of an EKF is achieved quite easily, but 
has some issues concerning the stability of the estimator 
because of the linearization done in (7) and (11). The proper 
choice of the initial estimates of the states and the covariance 
matrix is, for this reason, critical.  Another problem is that the 
linearized model is required to be locally observable.  This 
requirement is rather restrictive in real-life situations and has 
led to few practical applications of EFK in the field of 
biotechnological processes (Dochain & Perrier (1998)). 

4.2  Extended Luenberger observers 

Consider the following non-linear state system model 
describing the state variables x and output y(t). 

)()( ttdtd BuAxx +=     (17) 
))(()( tt xgy =      (18) 

An ELO is designed, based on the linearization of the output 
function  
 

[ ]))(ˆ()()()( ttttdtd xgyKBuAxx −++=  (19) 
 
with K the gain matrix. 
 
For more information on the ELO, the reader is referred to 
Zeitz (1987). Mendez-Acosta et al. (2010) have applied an 
ELO as part of a robust control of an anaerobic digester.  In 
this control, the composition of the inflow in the digester is 
not known, which gives rise to uncertain terms. These 
uncertainty functions can be dealt with by including 
augmented state vectors that are estimated with an ELO. 

4.3  Adaptive observers 

This technique consists of a joint state and parameter 
estimation: 

)ˆ),(ˆ(()ˆ,),(ˆ(ˆ 1 kxgyKkuxfx ttdtd −+=   (20) 
)ˆ),(ˆ((ˆ

2 kxgMKk tdtd −=    (21) 

with K1 and K2 design parameters of the observer which  
have to be defined in such a way to ensure estimation 
convergence. The main advantage of an adaptive observer is 
that it does not require the analytical description of the 
specific growth rate. This is simply considered as an 
unknown time-varying parameter. For a full review, we refer 
to Bastin & Dochain (1990) 

4.4  Asymptotic observers 

EKF and ELO are both based on a linearized model of the 
process, the stability and convergence properties are 
essentially local and valid around an equilibrium point.  
Another problem of EKF and ELO is that they require a 
perfect knowledge of the system parameters and the kinetics 
in particular.  This problem is not present for adaptive 
observers as the parameter values are continuously estimated. 
However, one may way wish to assign a unique value to the 
parameter or decouple the state estimation from the 
parameter estimation. This can be achieved by an asymptotic 
observer, which can be considered as an intermediate 
between EKF and ELO on the one side and an adaptive 
observer on the other.  Estimation of the states with AO does 
not require knowledge of the reaction rates (and their 
kinetics) and is a global method that does not suffer from 
instability in convergence due to the linearization around an 
equilibrium point. 

The following subsection is derived from Dochain & Perrier 
(1998).  

Consider a general dynamic model: 

quKrxx −++−= Ddtd    (22) 
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with D the dilution rate, K (n x m) the yield coefficient 
matrix, r  (m x 1) the reaction rate vector, u (n x 1) the feed 
rate vector  and q  (n x 1) the gaseous outflow rate vector. 
The states xa (p x 1) are measured on-line, the states xb (n-p x 
1) are unmeasured  

Consider following assumptions: 

• The number of on-line measured components (p) is 
larger than the number of reactions (m) 

• The reaction rate vector r is unknown 

• The yield coefficient matrix K is known. 

• The feed rate F, the dilution D and the gaseous 
outflow rate q are known by measurement or by 
control. 

• The m reactions are irreversible and independent 

A state transformation is applied: 

ba xAxAz 21 += ,    (23) 

so that (17) becomes 

)()( 21 bbaaDdtd quAquAzz −+−+−=  (24) 

The equations (23) and (24) form the basis of the derivation 
of the asymptotic observer: the transformed state z is 
estimated on-line with (24) followed by a back-
transformation according to (23) to retrieve the unknown 
measurements.  

)()(ˆˆ 21 bbaaDdtd quAquAzz −+−+−=  (25) 
[ ]11

1
22ˆ zAzAz −= −     (26) 

The most straightforward and most used choice for the state 
transformation is the following: 

pnI −=2A      (27) 
1

121
−−= KKA      (28) 

Note that the estimation of z is independent of the reaction 
rate. 

5. INCLUDING MICROBIOLOGY? 

As already mentioned in the introduction of this paper, the 
great diversity in microorganisms residing in an anaerobic 
digester greatly complicates the development of deterministic 
models. To our knowledge, no models exist that incorporate 
individual species or genera. However, efforts have been 
made by Ramirez et al. (2009a) to mimic the diversity by 
expanding each of the 7 microbiological groups in ADM1. 
Each group is partitioned into subgroup each with slightly 
different characteristics randomly chosen from a normal 
bimodal distribution. The prediction results tend to be more 
realistic in comparison to the original ADM1 which does not 
distinguish between microorganisms performing the same 
reaction. 

Promising is, however, the rapid development of molecular 
techniques that monitor the microbial activity and will make 
studies of the structure of microbial communities 
economically more viable. Examples of these techniques are 
polymerase chain reaction (PCR), DNA sequencing of PCR 
amplified genes, fluorescent in situ hybridisation (FISH), 
DNA stable isotope probing (DNA SIP), temperature and 
denaturing gradient gel electrophoresis (TGGE and DGGE), 
terminal restriction fragment length polymorphism (tRFLP), 
etc. (Justé et al. (2008)). These techniques applied on 
anaerobic digesters provide a deeper insight on the 
phenomena that occur. A good example is given by Shin et 
al., (2010) who monitor the shifts in the microbial 
community in a batch digestion using DGGE and real-time 
PCR.  More specifically, we believe that identification of 
specific genera and a characterization of the kinetic 
parameters that define their activity (kinetic constants, yield 
coefficients) may become possible and will give impetus to 
more accurate and complex models. 

 

ACKNOWLEDGEMENTS 

The authors would like to thank the Agency for Innovation 
by Science and Technology in Flanders (IWT/063374 and 
IWT/100196) and the Research Council of the Katholieke 
Universiteit Leuven (PDMK/10/121) for the financial 
support. This work was supported in part by Project 
KP/09/005 (SCORES4CHEM Knowledge Platform) of the 
Industrial Research Council of the Katholieke Universiteit 
Leuven, Project PFV/10/002 Center of Excellence OPTEC-
Optimization in Engineering and the Belgian Program on 
Interuniversity Poles of Attraction initiated by the Belgian 
Federal Science Policy Office. Jan Van Impe holds the chair 
Safety Engineering sponsored by the Belgian chemistry and 
life science federation essenscia. 

 

REFERENCES 

Aceves-Lara, C.-A., Latrille, E. and Steyer, J.-P. (2010). 
Optimal control of hydrogen production in a continuous 
anaerobic fermentation bioreactor, International Journal 
of Hydrogen Energy, 35 (19), pp 10710 – 10718. 

Alcaraz-González, V., Harmand, J., Rapaport, A., Steyer, J.-
P., González-Álvarez, V. and Pelayo-Ortiz, C. (2005). 
Robust interval-based regulation for anaerobic digestion 
processes. Water Science and  Technology, 52 (1–2), pp 
449–456. 

Andrews, J.F. (1969). Dynamic model of the anaerobic 
digestion model. Journal of the Sanitary Engineering 
Division; Proceedings of the American Society of Civil 
Engineers, 1, pp 95-116. 

Andrews, J.F. and Graef, S.P. (1971). Dynamic modeling and 
simulation of the anaerobic digestion process. Advances 
in Chemistry Series, 105, pp 126-162. 

Angelidaki, I., Ellegaard, L. and Ahring, B.K. (1993). A 
mathematical model for dynamic simulation of anaerobic 
digestion of complex substrates: focusing on ammonia 
inhibition. Biotechnology and Bioengineering, 42 (2), pp 
159-166. 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

5030



 
 

     

 

Angelidaki, I., Ellegaard, L. and Ahring, B.K. (1999). A 
comprehensive model of anaerobic bioconversion of 
complex substrates to biogas. Biotechnology and 
Bioengineering, 63 (3), pp 363-372. 

Antonelli, R., Harmand, J., Steyer, J.P. and Astolfi, A. 
(2003). Set-point regulation of an anaerobic digestion 

 process with bounded output feedback. IEEE 
Transactions on Control Systems Technology, 11 (4), pp 
495–504. 

Appels, L. Baeyens, J., Degrève, J. and Dewil, R. (2008). 
Principles and potential of the anaerobic digestion of 
waste-activated sludge. Progress in Energy and 
Combustion, 34 (6), pp 755-781. 

 Appels, L., Degrève, J., Van der Bruggen, B., Van Impe, J. 
and Dewil, R. (2010). Influence of low temperature 
thermal pre-treatment on sludge solubilisation, heavy 
metal release and anaerobic digestion. Bioresource 
technology, 101 (15), pp 5743-5748. 

Aubrun, C., Theilliol, D., Harmand, J. and Steyer, J.-P. 
(2001). Software sensor design for COD estimation in an 
anaerobic fluidized bed reactor. Water Science and 
Technology, 43 (7), pp 115-122. 

Bastin, G. and Dochain, D. (1990). On-line estimation and 
adaptive control of bioreactors. Elsevier Science 
Publication, Amsterdam. 

Batstone, D.J., Keller, J., Angelidaki, R.I., Kalyuzhnyi, S.V., 
Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, 
H. and Vavilin, V.A. (2002). The Anaerobic Digestion 
Model No 1 (ADM1), Water Science and Technology, 45 
(10), pp 65-73. 

Batstone, D.J. and Keller, J. (2003a). Industrial applications 
of the IWA anaerobic digestion model No. 1 (ADM1). 
Water Science & Technology, 47 (12), pp 199-206. 

Batstone, D.J., Pind, P.F. and Angelidaki, I. (2003b). Kinetics 
of thermophilic anaerobic oxidation of straight and 
branched chain butyrate and valerate. Biotechnology and 
Bioengineering, 84 (2), pp 195-204. 

Batstone, D.J., Keller, J. and Blackall, L.L. (2004a). The 
influence of substrate kinetics on the microbial 
community structure in granular anaerobic biomass. 
Water Research, 38 (6), pp 1390-1404. 

Batstone, D.J., Torrijos, M.J., Ruiz, C. and Schmidt, J.E. 
(2004b). Use of an anaerobic sequencing batch reactor 
for parameter estimation in modeling of anaerobic 
digestion. Water Science and Technology, 50 (10), pp 
295-303. 

Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A. and 
Steyer, J.-P. (2001a). Dynamical model development and 
parameter identification for an anaerobic wastewater 
treatment process. Biotechnology and Bioengineering,  
75 (4), pp 424-438. 

Bernard, O., Polit, M., Hadj-Sadok, Z., Pengov, M., Dochain, 
D., Estaben, M. and Labat, P. (2001b). Advanced 
monitoring and control of anaerobic wastewater 
treatment plants: software sensors and controllers for an 
anaerobic digester. Water Science and Technology, 43 
(7), pp 175-182.  

Bernard, O. and Bastin, G. (2005). On the estimation of the 
pseudo-stoichiometric matrix for macroscopic mass 
balance modeling of biotechnological processes.  

Mathematical Biosciences, 193, pp 51 -77.Bernard, O., 
Chachuat, B., Hélias, A. and Rodriguez, J. (2006). Can 
we assess the model complexity for a bioprocess: theory 
and example of the anaerobic digestion process. Water 
Science & Technology, 53 (1), pp 85-92. 

Bishop, C.M. (1995). Neural networks for pattern 
recognition. Oxford University Press.  

Costello, D.J., Greenfield, P.F. and Lee, P.L. (1991). 
Dynamic modeling of a single-stage high-rate anaerobic 
reactor – I: Model derivation. Water Research, 25 (7), pp 
847-858. 

De Baere, L. (2006). Will anaerobic digestion of solid waste 
survive in the future? Water Science and Technology, 
53 (8), pp 187-194. 

De Gracia, M., Sancho, L., Garcia-Hera,s J.L., 
Vanrolleghem, P. and Ayesa, E. (2006). Mass and charge 
conservation check in dynamic models: application to 
the new ADM1 model. Water Science and Technology, 
53 (1), pp 225-234. 

Delbès, C., Moletta, R. and Godon, J-J. (2001). Bacterial and 
archaeal 16S rDNA and 16S rRNA dynamics during an 
acetate crisis in an anaerobic digestor ecosystem. FEMS 
Microbiology Ecology, 35 (1), pp 19-26. 

Derbal, K., Bencheikh-lehocine, M., Cecchi, F., Meniai, A.-
H. and Pavan, P. (2010). Application of the IWA ADM1 
model to simulate anaerobic co-digestion of organic 
waste with waste activated sludge in mesophilic 
condition. Bioresource Technology, 100 (4), pp 1539-
1543. 

Deublein, D. and Steinhauser, A. (2008). Biogas from waste 
and renewable resources, pp 129-147.Wiley-VCH 
Verlag GmbH & Co. KGaA, Weinheim.  

Dochain, D. and Perrier, M. (1998). Monitoring and adaptive 
control of bioprocesses. In Van Impe, J.F.M., 
Vanrolleghem, P.A., and Iserentant, D.M. Advanced 
instrumentation, data interpretation, and control of 
biotechnological processes, pp 347-400. Kluwer 
Academic Publishers. Dordrecht.  

Estaben, M., Polit, M. and Steyer, J.P. (1997). Fuzzy control 
for an anaerobic digester. Control Engineering Practice, 
5 (98), pp 1303-1310.  

Fedorovich, V., Lens, P. and Kalyuzhnyi, S. (2003). 
Extension of Anaerobic Digestion Model No. 1 with 
processes of sulfate reduction. Applied Biochemistry and 
Biotechnology, 109 (1-3), pp 33-45. 

Feng, Y., Behrendt, J., Wendland, C. and Otterpohl, R. 
(2006). Parameter analysis of the IWA Anaerobic 
Digestion Model No. 1 for the anaerobic digestion of 
blackwater with kitchen refuse. Water Science and 
Technology, 54 (4), pp 139-147. 

Fezzani, B. and Cheikh, R.B. (2008). Implementation of IWA 
anaerobic digestion model No. 1 (ADM1) for simulating 
the thermophilic anaerobic co-digestion of olive mill 
wastewater with olive mill solid waste in a semi-
continuous tubular digester. Chemical Engineering 
Journal, 141 (1-3), pp 75-88. 

Fezzani, B. and Ben Cheikh, R. (2009). Extension of the 
anaerobic digestion model No. 1 (ADM1) to include 
phenolic compounds biodegradation processes for the 
anaerobic co-digestion of olive mill wastes at 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

5031



 
 

     

 

thermophilic temperature. Journal of Hazardous 
Materials, 162 (2-3), pp 1563-1570. 

Gosset, J.M. and Belser, R.L. (1982). Anaerobic digestion of 
waste activated sludge. Journal of Environmental 
Engineering, 108, pp 1101-1120. 

Harmand, J., Manh, A.G. and Steyer, J.-P. (2000). 
Identification and disturbance accommodating control of 
a fluidized bed anaerobic reactor. Bioprocess 
Engineering, 23 (2), pp 177–185. 

Hilgert, N., Harmand, J., Steyer, J.P. and Vila, J.P. (2000). 
Nonparametric identification and adaptive control 

 of an anaerobic fluidized bed digester. Control 
Engineering Practice, 8 (4), 367–376. 

Hill, D.T. (1982). A comprehensive dynamic model for 
animal waste methanogenesis. Transactions of the 
American Society of Agricultural Engineers, 25 (5), pp 
1374-1380. 

Holubar, P., Zani, L., Hager, M., Fröschl, W., Radak, Z. and 
Braun, R. (2002). Advanced controlling of anaerobic 
digestion by means of hierarchical neural networks.  
Water Research, 36 (10), pp 2582-2588. 

Jang, J.S.R., Sun, C.T. (1995). Neuro-fuzzy modeling and 
control. Proceedings of the IEEE, 83 (3)  pp 378-405. 

Jeppsson, U., Pons, M.-N., Nopens, I., Alex, J., Copp, J.B., 
Gernaey, K.V., Rosen, C., Steyer, J.-P. and 
Vanrolleghem, P.A. (2007). Benchmark simulation 
model no.2: general protocol. Water Science & 
Technology, 56 (8), pp 67-87. 

Justé, A., Thomma, B.P.H.J. and Lievens, B. (2008) Recent 
advances in molecular techniques to study microbial 
communities in food-associated matrices and processes. 
Food Microbiology,  25 (6), pp 745-761. Koch, K., 
Lübken, M., Gehring, T., Wichern, M. and Horn, H. 
(2010). Biogas from grass silage – Measurements and 
modeling with ADM1. Bioresource Technology, 101 
(21), pp 8158-8165.   

Lübken, M., Gehring, T. and Wichern, M. (2010). 
Microbiological fermentation of lignocellulosic biomass: 
current state and prospects of mathematical modeling. 
Microbiological Biotechnology, 85 (6), pp 1643-1652. 

Mailleret, L., Bernard, O. and Steyer, J.P. (2004). Robust 
onlinear adaptive control for bioreactors with unknown 
kinetics. Automatica, 40 (8), pp 1379–1385. 

Martens, H. and Naes, T. (1992). Multivariate Calibration, 
pp 97- 116. Wiley, New York.  

Marsili-Libelli, S. and Beni, S. (1996).  Shock load modelling 
in the anaerobic digestion process. Ecological Modelling, 
84 (1-3), pp 215-232. 

Méndez-Acosta, H.O., Palacious-Ruiz, B., Alcaraz-Gonzàlez, 
V., Gonzàlez-Alvarez, V. and Garcia-Sandoval, J.P. 
(2010). A robust control scheme to improve the stability 
of anaerobic digestion processes. Journal of Process 
Control, 20 (4), pp 375-383. 

Mu, S.J., Zeng, Y., Wu, P., Lou, S.J. and Tartakovsky, B. 
(2008). Anaerobic digestion model no.1–based 
distribution parameter model of anaerobic reactor: I. 
Model development. Bioresource Technology, 99 (9), pp 
3665-3675. 

Neyens, E., Baeyens, J., Dewil, R. and De Heyder, B. (2004). 
Advanced sludge treatment affects extracellular 

polymeric substances to improve activated sludge 
dewatering. Journal of Hazardous Materials, 106 (2-3), 
pp 83-92.  

Palatsi, J., Illa, J., Prenafeta-Boldú, F.X., Laureni, M., 
Fernandez, B., Angelidaki, I. and Flotats, X. (2010). 
Long-chain fatty acids inhibition and adaptation process 
in anaerobic thermophilic digestion: Batch tests, 
microbial community structure and mathematical 
modelling. Bioresource Technology, 101 (7), pp 2243-
2451.  

Pavlostathis, S.G. and Gossett, J.M. (1986). A kinetic model 
for anaerobic digestion  of biological sludge. 
Biotechnology and Bioengineering, 28 (10), pp 1519–
1530. 

Peiris, B.R.H., Rathnasiri, P.G.,  Johansen, J.E., Kuhn, A. and 
Bakke, R. (2005). ADM1 with modifications for bio-
hydrogen simulations. The First International Workshop 
on the IWA Anaerobic Digestion Model No. 1 (ADM1), 
pp 105-112. 

Penumathsa, B.K.V., Premier, G.C., Kyazze, G.,  Dinsdale, 
R.M., Guwy, A.J.,  Esteves., S. and Rodríguez, J. (2008). 
ADM1 can be applied to continuous bio-hydrogen 
production using a variable stoichiometry approach. 
Water Research, 42 (16). pp. 4379-4385. 

Perrier, M. and Dochain, D. (1992). An analysis of the impact 
of controlled variables selection on the operation of 
anaerobic digestion processes. In Karim, M. and 
Stephanopoulous, G. (ed.), Modeling and control of 
biotechnical processes, pp 65-70. Elsevier, Oxford. 

Picioreanu, C., Batstone, D.J. and van Loosdrecht, M.C.M. 
(2005). Multidimensional modelling of anaerobic 
granules. Water Science & Technology, 52 (1-2), pp 501-
507. 

Ramirez, I., Volcke, E.I.P., Rajinikanth, R. and Steyer, J.-P. 
(2009a). Modeling microbial diversity in anaerobic 
digestion through an extended ADM1 model. Water 
Research, 43 (11), pp 2787-2800. 

Ramirez, I., Mottet, A., Carrère, H., Déléris, S., Vedrenne, F.  
and Steyer, J.-P. (2009b). Modified ADM1 
disintegration/hydrolysis structures for modeling batch 
thermophilic anaerobic digestion of thermally pretreated 
waste activated sludge. Water Research, 43 (14), pp 
3479-3492. 

Rosen, C. and Jeppsson, U. (2006). Aspects on ADM1 
Implementation within the BSM2 framework. IWA  
BSM TG Technical Report (available at 
www.benchmarkwwtp.org). 

Rozzi, A., Merlini, S. and Passino, R. (1985). Development 
of a 4-population model of the anaerobic degradation of 
carbohydrates. Environmental Technology letters, 6 (12), 
pp 610-619.  

Sanders, W.T.M., Geerink, M., Zeeman, G. and Lettinga, G. 
(2000). Anaerobic hydrolysis kinetics of particulate 
substrates. Water Science and Technology, 41(3), pp 17-
42.  

Shin, S.G., Lee, S., Lee, C., Hwang, K. and Hwang, S. 
(2010). Qualitative and quantitative assessment of 
microbial community in batch anaerobic digestion of 
secondary sludge. Bioresource Technology, 101(24), pp 
9461-9470 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

5032



 
 

     

 

Siegrist, H., Renggli D. and Gujer W. (1993). Mathematical 
modeling of anaerobic mesophilic sewage-sludge 
treatment. Water Science and Technology, 27 (2), pp 25-
36. 

Steyer, J.P., Bernard, O., Batstone, D.J. and Angelidaki, I. 
(2006). Lessons learnt from 15 years of ICA in anaerobic 
digesters. Water Science & Technology, 53 (4-5), pp 25-
33. 

Tomei, M.C., Braguglia, C.M., Cento, G. and Mininni, G. 
(2009). Modeling of anaerobic digestion of sludge. 
Critical Reviews in Environmental Science and 
Technology, 39 (2), pp 1003-1051. 

Vapnik, V.N. (1999). An overview of statistical learning 
theory. IEEE transactions on neural networks, 10 (5) 
Statistical learning theory, pp 988-999. 

Vavilin, V.A. and Angelidaki, I. (2005). Anaerobic 
degradation of solid material: Importance of inhibition 
centers for methanogenesis, mixing intensity, and 2D 
distributed model. Biotechnology and Bioengineering, 89 
(1), pp 113-122. 

von Sachs, J., Meyer, U., Rys, P. and Feitkenhauer, H. 
(2003). New approach to control the methanogenic 
reactor of a two-phase anaerobic digestion system. Water 
Research, 37 (5), pp 973-982. 

Wold, S, Sjöström, M. and Eriksson, L. (2001). PLS-
regression: a basic tool of chemometrics. Chemometrics 
and Intelligent Laboratory Systems, 58 (2), pp 109-130. 

Yasui, H., Goel, R., Li, Y.Y. and Noike, T. (2008). Modified 
ADM1 structure for modelling municipal primary sludge 
hydrolysis. Water Research, 42 (1-2), pp 249-259. 

Zeitz, M. (1987). The extended Luenberger observer for 
nonlinear systems. Systems & Control Letters, 9 (2), pp 
149-156.  

 

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

5033


