Effective method for design of traffic lights control

Miroslav Makys*. Stefan Kozak**

* Slovak University of Technology, Faculty of Informatics and Information Technologies, Ilkovicova 3, 84216 Bratislava, Slovakia (e-mail: makys@fiit.stuba.sk)
** Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Ilkovicova 3, 84216 Bratislava, Slovakia (e-mail: stefan.kozak@stuba.sk)

Abstract: The paper deals with modeling and design of hybrid control using HYSDEL modeling language and MPT toolbox for MATLAB, respectively. We created optimal structure model using hybrid systems theory and designed predictive control of traffic lights of two interconnected intersections. Considered intersections are in detail described in proposed article. A model has been built describing the evolution of the queue based on number of incoming and outgoing cars and traffic lights. A realistic intersections model has been built and achieving optimal traffic lights control was successfully verified on many model variations.

Keywords: hybrid predictive control, traffic lights control, hybrid modeling, transport system

1. INTRODUCTION

During last tenths of year traffic in towns has become serious problem and traffic jam everyday occurrence. As traffic lights are tool to control traffic we need to control the lights optimally. Many authors dealt this problem and various approaches were examined. For example in (Zhang. L., Li. Z. and Chen. Y., 2008) traffic light control system was considered to be hybrid system and hybrid Petri nets were used to examine this problem. Timed coloured Petri nets were used in (Huang. Y., Chung. T., 2010). In (De Schutter. B., De Moor. B., 1997) the problem was solved as minimization of performance function which could be defined to minimize one of following criteria: average queue length over all queues, average queue over the worst queue, worst case queue length, average waiting time over all queues and average waiting time over the worst queue. Presented approach also allows green-amber-red cycle time to vary from one cycle to another. In (Haddad. J., Mahalel. D., De Schutter. B., Ioslovich. I., Gutman. P.-O., 2009) discrete-event max-plus model of intersection was proposed. Max-plus optimization problem was converted and solved by linear programming. The control objective is to minimize queue lengths.

In this paper we created model of intersection as a hybrid system and use hybrid systems control theory to control traffic lights. The main aim is to design effective and fast control of traffic lights of two successive intersections in optimal way.

The paper has the following structure. In the second section examined system structure is described and simplified yet precise model is derived. The section three deals with control problem definition and obtained results and finally in section four is conclusion of this paper.

2. DESCRIPTION AND MODEL OF INTERSECTIONS

2.1 Description of intersections

In this study, we work with two interconnected intersections. It means that cars outgoing from one of arms of intersection 1 are coming to arm of intersection 2 and vice versa. Scheme of this system is depicted in Figure 1. First intersection depicted in Figure. 2. consists of 4 two-way arms labelled A, B, C, D the other intersection depicted in Figure 3. consists of 3 two-way arms labelled E, F, G.

Fig. 1. System of interconnected intersections

Now we are going to describe first intersection. Streams of cars entering the intersection are labelled A1, B1, B2, C1, C2, D1, D2 and controlled by traffic lights SA1, SB1, SB2, SC1, SC2, SD1, SD2, respectively. Each of traffic lights has 3 phases: green, amber and red.

Intersection 1

Intersection 2

Fig. 2. First intersection

Fig. 3. Second intersection

Fig. 1. System of interconnected intersections
The amount of cars coming into the intersection for each of the directions is denoted as λ_i, where $i \in \{A1, B1, B2, C1, C2, D1, D2\}$. Function λ_i is formed by a series of Dirac pulses, and for each of the stream is different. One Dirac pulse represents coming of one car. When the traffic light is green or amber, amount of outgoing cars for each of the streams is denoted as μ_i or κ_i, respectively. Functions μ_i and κ_i are also formed by a series of Dirac pulses.

Fig. 2. Scheme of intersection 1

Intersection 2 which is depicted in Figure 3, can be described accordingly to intersection 1. Streams of intersection 2 are labelled $E1, E2, F1, F2, G1$ and $G2$ and are controlled by traffic lights $SE1, SE2, SF1, SF2, SG1$ and $SG2$ respectively.

Fig. 3. Scheme of intersection 2

Cars outgoing from arm B of intersection 1 are coming to arm E of intersection 2 and vice versa. Time needed car to come from one intersection to another is 15 seconds.

2.2 Model of intersections

Proposal of intersection model was based on ideas in (De Schutter, B., De Moor, B., 1997) and (Makýš, M., Kozák, Š. 2010). We again describe just model of intersection 1, model of intersection 2 was done accordingly. Let us denote length of waiting car queues as L_i, where $i \in \{A1, B1, B2, C1, C2, D1, D2\}$. Length of queue is counted as number of cars waiting in the queue. When traffic light Si is red cars are just coming to intersection when it is green or amber cars are coming and outgoing. Difference of queue length is determined by equation (1):

$$\frac{dL_i}{dt} = \begin{cases}
\lambda_i(t) & \text{if } Si = \text{"red"} \\
\lambda_i(t)-\mu_i(t) & \text{if } Si = \text{"green"} \\
\lambda_i(t)-\kappa_i(t) & \text{if } Si = \text{"amber"}
\end{cases}$$

(1)

where $i \in \{A1, B1, B2, C1, C2, D1, D2\}$.

Table 1. List of stream pairs which can not enter intersection 1 at the same time

<table>
<thead>
<tr>
<th>Traffic light 1</th>
<th>Traffic light 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>D1</td>
</tr>
<tr>
<td>A1</td>
<td>D2</td>
</tr>
<tr>
<td>A1</td>
<td>B1</td>
</tr>
<tr>
<td>D1</td>
<td>C1</td>
</tr>
<tr>
<td>D1</td>
<td>C2</td>
</tr>
<tr>
<td>D1</td>
<td>B1</td>
</tr>
<tr>
<td>D2</td>
<td>B1</td>
</tr>
<tr>
<td>C1</td>
<td>B1</td>
</tr>
</tbody>
</table>

For a realistic model of intersection it is important to define a constraint to the queue length: $Cap_i \geq L_i \geq 0$, where Cap_i is capacity of queue i. Due to avoid collisions in the intersection it is necessary to impose restrictions on the concurrent green color for determined pairs of traffic lights. These were determined on the basis of intersection specification. The list is in Table 1. Since the $B2$ stream is not in conflict with any other stream, it is not necessary to control it and we miss it. Similar restrictions related to intersection 2 are listed in Table 2.

Table 2. List of stream pairs which can not enter intersection 2 at the same time

<table>
<thead>
<tr>
<th>Traffic light 1</th>
<th>Traffic light 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>G2</td>
</tr>
<tr>
<td>E2</td>
<td>F1</td>
</tr>
<tr>
<td>E2</td>
<td>F2</td>
</tr>
<tr>
<td>E2</td>
<td>G2</td>
</tr>
<tr>
<td>F2</td>
<td>G1</td>
</tr>
<tr>
<td>F2</td>
<td>G2</td>
</tr>
</tbody>
</table>
2.3 Simplified intersection model

Previous intersection model is too complicated for mathematical analysis, therefore, in this section we simplify the model so that it is easier to work with it while still precise enough. It includes following changes:

- lengths of queues are continuous variables,
- comings and outgoings of cars from intersection are represented by constant function (number of cars per second),
- amber phase is missing.

Working with intersection 1 let us denote amount of incoming cars as π_i and amount of outgoing cars as r_i for each stream where $i \in \{A1, B1, B2, C1, C2, D1, D2\}$.

Difference of queue length is determined by equation (2):

$$\frac{dL_i}{dt} = \begin{cases} \pi_i(t) & \text{if } S_i = \text{"red"} \\ \pi_i(t) - r_i(t) & \text{if } S_i = \text{"green"} \end{cases}$$

Intersection model is thus simplified, so that when traffic light is green, cars are coming and outgoing from intersection in constant rate when traffic lights is red cars are just outgoing in constant rate. Amber phase is omitted. The model was created by HYSDEL modelling language described in (Bemporad A., 2004), (Bemporad A., 2007) and (Bemporad A., 2009) which was designed for modelling of hybrid systems. Since the generated model is designed to simulate changes in the length of streams of cars on each of intersection arms, state of system is defined as the number of cars waiting in individual streams thus it is vector of length 6.

The basic idea is simple: a queue of cars waiting before the intersection is increasing when the light is red and decreasing when the light is green.

Since the intersection is controlled by 6 traffic lights, intersection model will have 6 input control signals one for each of traffic lights. Traffic light can be green if it does not violate the restrictions in Table 1. For example, if $SC1$ light is green also $SC2$ and $SD2$ lights or $SC2$ and $SA1$ lights can be green. $SB1$ and $SD1$ lights have to be red. We need not therefore to subject to each of the traffic lights in particular. With this feature it is possible to reduce the number of control signals, thus simplifying the intersection model and hence the problem of control. Our aim is to determine the minimum number of control signals. Task is therefore to determine minimum normal disjunctive form (MNDF) on the basis of Karnaugh map. Table 3 shows Karnaugh map for the intersection 1.

MNDF for given map is:

$$\neg A1 \land \neg B1 \land \neg D1 + \neg B1 \land \neg D1 \land \neg D2 + \neg A1 \land \neg C1 \land \neg D1 \land \neg D2 + \neg A1 \land \neg B1 \land \neg C1 \land \neg C2$$

where \neg denotes operator of negation.

It flows from MNDF that to control the intersection we need 4 signals which control the traffic lights following way:

- $S1 = \neg A1 \land \neg B1 \land \neg D1$ – green light for $B2, C1, C2, D2$ streams
- $S2 = \neg B1 \land \neg D1 \land \neg D2$ – green light for $A1, B2, C1, C2$ streams
- $S3 = \neg A1 \land \neg C1 \land \neg D1 \land \neg D2$ – green light for $B1, B2, C2$ streams
- $S4 = \neg A1 \land \neg B1 \land \neg C1 \land \neg C2$ – green light for $B2, D1, D2$ streams

Instead of restrictions listed in the Table 1. we get a new restriction: at most one of the signals can be set to TRUE. Because of maximum intersection throughput we can modify this restriction so that it is: just one of the signals must be set to TRUE.

Let us define vector X as system state and vector U as system input:

$$X = \begin{bmatrix} L_{A1} \\ L_{B1} \\ L_{C1} \\ L_{C2} \\ L_{D1} \\ L_{D2} \end{bmatrix}, \quad U = \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \end{bmatrix}$$

Table 3. Karnaugh map for intersection 1
Model of system is then defined by (4):

\[x(k+1) = Ax(k) + Bu(k) + f \]

where:

\[
A = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\]

\[f = \begin{bmatrix}
\pi_{A1} \\
\pi_{B1} \\
\pi_{C1} \\
\pi_{C2} \\
\pi_{D1} \\
\pi_{D2} \\
\end{bmatrix},
\]

\[
B = \begin{bmatrix}
-\tau_{A1} & 0 & 0 & 0 & 0 & 0 \\
0 & -\tau_{B1} & 0 & 0 & 0 & 0 \\
-\tau_{C1} & -\tau_{C1} & 0 & 0 & 0 & 0 \\
-\tau_{C2} & -\tau_{C2} & -\tau_{C2} & 0 & 0 & 0 \\
0 & 0 & 0 & -\tau_{D1} & 0 & 0 \\
-\tau_{D2} & 0 & 0 & 0 & -\tau_{D2} & 0 \\
\end{bmatrix}
\]

Using similar methodology we get following results for intersection 2. Based on restrictions in Table 2, we create Karnaugh map shown in Table 4.

Table 4. Karnaugh map for intersection 2

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

MNDF of this map is:

\[
(\neg E2 \& \neg G1 \& \neg G2) \lor (\neg E1 \& E2 \& F2) \lor (\neg F1 \& F2 \& G2) \\
\lor (\neg E2 \& \neg F2 \& \neg G2)
\]

Based on MNDF we have 4 control signals:

- \(S5 = \neg E2 \& \neg G1 \& \neg G2 \) – green light for \(E1, F1, F2 \)
- \(S6 = \neg E1 \& E2 \& \neg F2 \) – green light for \(F1, G1, G2 \)
- \(S7 = \neg F1 \& \neg F2 \& \neg G2 \) – green light for \(E1, E2, G1 \)
- \(S8 = \neg E2 \& \neg F2 \& \neg G2 \) – green light for \(E1, F1, G1 \)

And we get similar intersection model.

2. MPC CONTROLLER DESIGN

In this paper we use model predictive control (MPC) approach. In MPC the current control input is obtained by solving at each sampling instant an open-loop constrained optimal control over a finite horizon using current state of plant as the initial state. Only first control input is used and in next time instant optimisation is performed again on updated plant state. In our case state is represented by number of cars waiting in individual queues measured by sensors.

Design of control was made using MPT toolbox for Matlab described in (Kvasnica, M., Grieder, P., and Baotic, M., 2004) and (Kvasnica, M., 2009). The aim of control is to set traffic lights so that throughput of intersection is maximum, while the cars on less busy streams do not wait too long to get to turn. Theoretical maximum throughput is achieved when all the lights are green, which of course due to collisions is not possible. Restrictions are summarized in Table 1. and Table 2.

Aim of approach used in this paper is to minimize the number of cars facing red lights. To avoid permanent switching of traffic lights performance function penalizes also changes in traffic lights. The aim is to minimize performance function (5):

\[
J = \sum_{k=1}^{N} ||Q_x x(k)|| + \sum_{k=1}^{N} ||Q_u u(k)|| + \sum_{k=1}^{N} ||Q_f (u(k-1) - u(k))||
\]

subject to:

\[
x(k+1) = Ax(k) + Bu(k) + f
\]

\[
x(t+k) \geq 0, \text{ for } k \in \{1,2,\ldots,N\}
\]

\[
x(t+k) \leq \begin{bmatrix}
Cap_{A1} \\
Cap_{B1} \\
Cap_{C1} \\
Cap_{C2} \\
Cap_{D1} \\
Cap_{D2} \\
\end{bmatrix}, \text{ for } k \in \{1,2,\ldots,N\}
\]
\|u\| = 1

where: \(N\) is length of prediction horizon,

\[
Q_x, Q_L, Q_U = \begin{bmatrix}
L_{AI} & 0 & 0 & 0 \\
0 & 0 & L_{BI} & 0 \\
L_{CI} & L_{CI} & 0 & 0 \\
L_{C2} & L_{C2} & L_{C2} & 0 \\
0 & 0 & 0 & L_{DI} \\
L_{D2} & 0 & 0 & L_{D2}
\end{bmatrix},
\]

where \(\text{Cap}_i\) is capacity of queue \(i, i \in \{A1, B1, C1, C2, D1, D2\}\).

First term of performance function (5) represents number of cars waiting in intersection. Second term represents number of cars facing green light. So difference of first and second term represents number of cars facing red light. Third performance function term penalizes switching of traffic lights.

Using this approach we get two similar control laws – one for each intersection. Relation between these two systems is presented by “road” which connects two arms of intersections.

During testing of this method we created temporary bigger amount of cars coming to stream B1 of intersection 1. In resulting graphs we can see that designed control algorithm is able to adapt to changed conditions.

Results of this method are depicted in Figures 4–6 for intersection 1 and in Figures 7–9 for intersection 2.
Fig. 8. Input signal S in intersection 2 is set to TRUE when value of function in graph is i

Fig. 9. Time response of total number of cars waiting in streams of intersection 2

3. CONCLUSIONS

The paper deals with the design of optimal model structure and innovative hybrid predictive control of typical hybrid dynamic real traffic systems. The main result of the paper is proposal of two interconnected intersections control based on hybrid predictive control. The main objective for traffic lights setting is the number of cars faced to red light. This is a “fair” approach because we let pass through cars which are in longest queue.

To get information about other approaches to modelling and control of transport systems we refer reader to (Kvasnica, M., Grieder, P., and Baotic, M. (2004). Multi-parametric toolbox (MPT). http://control.ee.ethz.ch/~mpt/

Advantage of this approach is that it calculates with actual lengths of car queues so it is able to adapt to changes in amount of cars coming to intersection as it was shown.

Modelling and simulation obtained results proved that the proposed approach is suitable for real intersections.

ACKNOWLEDGEMENTS

This project was supported by grant of VG 1/1105/11 (VEGA) project and APVV project No VMSP-P-0059-09.

REFERENCES

