On indefinite damping and gyroscopic stabilization

Tobias Damm* Jan Homeyer **
* Department of Mathematics, TU Kaiserslautern, 67663
Kaiserslautern, Germany (e-mail: damm@mathematik.uni-kl.de)
** Department of Mathematics, TU Kaiserslautern, 67663
Kaiserslautern, Germany (e-mail: homeyer@mathematik.uni-kl.de)

Abstract

: We consider linear vibrational systems with positive definite stiffness matrix K and indefinite damping matrix D. For the system to be stabilizable by gyroscopic forces it is necessary that both the trace of D and the trace of $K^{-1} D$ is positive. In the present note we discuss sufficiency of this condition.

1. INTRODUCTION

Consider a vibrational mechanical system of the form

$$
\begin{equation*}
\ddot{x}+D \dot{x}+K x=0, \tag{1}
\end{equation*}
$$

with indefinite damping matrix D and positive definite stiffness matrix K. In general, this system possesses both stable and unstable modes and thus is unstable. It is the idea of gyroscopic stabilization to mix these modes so that the system is stabilized, without introducing further dissipation. This is done by adding gyroscopic forces $G \dot{x}$ with a suitable skew-symmetric matrix G to the left-hand side (see e.g. L. Barkwell [1992]).
Negative damping appears in models with friction induced vibrations, see Brommundt [1995]) or Popp and Rudolph [2003]). A good overview on mechanisms that create friction induced vibrations and shows counter measures to avoid these vibrations can be found in Popp, Rudolph, Kroeger and Lindner [2004]).
Definition 1. We call $G=-G^{T} \in \mathbb{R}^{n \times n}$ a gyroscopic stabilizer for system (1), if

$$
\begin{equation*}
\ddot{x}+(D+G) \dot{x}+K x=0 \tag{2}
\end{equation*}
$$

is asymptotically stable. In this case the system is gyroscopically stabilizable.

A well-known necessary condition for gyroscopic stabilizability (which we recall below) is that the traces of D and $K^{-1} D$ are both positive. In the recent paper Kliem and Pommer [2009], a Lyapunov matrix equation approach ist used. The authors ask whether this condition is also sufficient. While in the case $n=2$ they give an affirmative answer, for $n>2$ gyroscopic stabilizability so far has only been shown under additional conditions.

2. PRELIMINARIES: PROJECTIONS AND TRACES

By $\operatorname{tr} A$ we denote the trace of a square matrix. It is wellknown that $\operatorname{tr} B C=\operatorname{tr} C B$ if the product $B C$ is a square matrix. Hence, if $U=\left[u_{1}, \ldots, u_{n}\right] \in \mathbb{C}^{n \times n}$ is unitary then $\operatorname{tr} A=\operatorname{tr} A U U^{*}=\operatorname{tr} U^{*} A U=\sum_{j=1}^{n} u_{j}^{*} A u_{j}$.

More generally, if $U=\left[u_{1}, \ldots, u_{k}\right] \in \mathbb{C}^{n \times k}$ has orthonormal columns, we write $\mathcal{U}=\operatorname{Span}\left\{u_{1}, \ldots, u_{k}\right\}$ and $P_{\mathcal{U}}=$ $U U^{*}$ for the orthogonal projection onto \mathcal{U}. Then $P_{U} A P_{U}$ is the projection of A to \mathcal{U} and

$$
\operatorname{tr}_{\mathcal{U}} A:=\operatorname{tr}\left(P_{U} A P_{U}\right)=\operatorname{tr}\left(U^{*} A U\right)=\sum_{j=1}^{k} u_{j}^{*} A u_{j}
$$

is the trace of the projected matrix. It is important that $\operatorname{tr}_{\mathcal{U}}$ depends continuously on \mathcal{U}, or, equivalently, on the orthogonal projector $P_{\mathcal{U}}$.
A matrix $D=D^{T} \in \mathbb{R}^{n \times n}$ is positive definite, if $\operatorname{tr}_{\mathcal{U}} D>0$ for all non-zero subspaces $\mathcal{U} \subset \mathbb{C}^{n}$. If D is indefinite, there exists a vector $u \in \mathbb{R}^{n}$ with $u^{T} D u=0$.

If G is skew-symmetric then $\operatorname{tr} G=0$. Moreover, if $P=$ $Q Q^{T}$ is positive definite then also $\operatorname{tr} P G=\operatorname{tr} Q^{T} G Q=0$.

Note that the eigenvalues of a skew-symmetric matrix G are either zero or complex conjugate pairs of purely imaginary numbers and a set of eigenvectors of a skewsymmetric matrix can be chosen as an orthonormal basis of \mathbb{C}^{n}, where the complex eigenvectors come in conjugate pairs as well. If v, w is any pair of normalized complex conjugate orthogonal vectors, we have

$$
\begin{align*}
& v^{*} D v=w^{*} D w=\frac{1}{2} \operatorname{tr}_{\operatorname{Span}\{v, w\}} D \\
&= \frac{1}{2} \operatorname{tr}_{\mathrm{Span}\left\{b_{1}, b_{2}\right\}} D=\frac{1}{2}\left(b_{1}^{*} D b_{1}+b_{2}^{*} D b_{2}\right) \tag{3}
\end{align*}
$$

for any orthonormal basis $\left\{b_{1}, b_{2}\right\}$ of $\operatorname{Span}\{v, w\}$ and any matrix D of suitable size, a fact we use freqently.

3. A NECESSARY CONDITION

The second-order system (2) can be written in first order form as

$$
\frac{d}{d t}\left[\begin{array}{l}
x \tag{4}\\
\dot{x}
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-K & -D-G
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x}
\end{array}\right]=A_{G}\left[\begin{array}{l}
x \\
\dot{x}
\end{array}\right] .
$$

It is asymptotically stable if and only if $\sigma\left(A_{G}\right) \subset \mathbb{C}_{-}$, which implies $\operatorname{tr} A_{G}<0$, i.e. $\operatorname{tr} D>0$. Moreover, since $\sigma\left(A_{G}\right) \subset \mathbb{C}_{-}$if and only if $\sigma\left(A_{G}^{-1}\right) \subset \mathbb{C}_{-}$, where

$$
A_{G}^{-1}=\left[\begin{array}{cc}
-K^{-1}(D+G) & -K^{-1} \\
I & 0
\end{array}\right]
$$

we conclude that also $0<\operatorname{tr} K^{-1}(D+G)$. Let Q denote the positive definite square root of K^{-1}. Then $\operatorname{tr} K^{-1} G=$ $\operatorname{tr} Q G Q=0$, since $Q G Q$ is skew-symmetric. It follows $0<\operatorname{tr} K^{-1} D$. These necessary criteria are well known (e.g. Kliem and Müller [1997], Müller [1971]). To analyze sufficiency we first reformulate the gyroscopic stabilization problem as an inverse eigenvector problem.

4. AN INVERSE EIGENVECTOR PROBLEM

The matrix A_{G} is asymptotically stable if and only if the matrix

$$
-A_{G}-A_{G}^{-1}=\left[\begin{array}{cc}
K^{-1}(D+G) & K^{-1}-I \\
K-I & D+G
\end{array}\right]
$$

is positive stable (i.e. has all eigenvalues in \mathbb{C}_{+}). A similarity transformation with $T=\left[\begin{array}{cc}Q & 0 \\ 0 & I\end{array}\right]$ brings $-\left(A_{G}+A_{G}^{-1}\right)$ to the form

$$
\begin{align*}
& -T^{-1}\left(A_{G}+A_{G}^{-1}\right) T=\left[\begin{array}{cc}
Q(D+G) Q & Q-Q^{-1} \\
Q^{-1}-Q & D+G
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
Q G Q & 0 \\
0 & G
\end{array}\right]+\left[\begin{array}{cc}
Q D Q & Q-Q^{-1} \\
Q^{-1}-Q & D
\end{array}\right] \tag{5}
\end{align*}
$$

By a perturbation argument we can formulate a stabilizability criterion as an inverse eigenvector problem.
Proposition 2. Let $\tau>0$ and $D_{\tau}=D-\tau I$.
For system (2) to be gyroscopically stabilizable it is sufficient that there exists a skew-symmetric matrix $G=$ $-G^{T}$ with the following properties:
(a) Both G and $Q G Q$ only have simple eigenvalues.
(b) If v is an eigenvector of G then $v^{*} D_{\tau} v \geq 0$.
(c) If w is an eigenvector of $Q G Q$ then $w^{*} Q D_{\tau} Q w \geq 0$.

Proof. Instead of (5) consider the matrix

$$
M_{\varepsilon}=\left[\begin{array}{cc}
Q G Q & 0 \\
0 & G
\end{array}\right]+\varepsilon\left[\begin{array}{cc}
Q D Q & Q-Q^{-1} \\
Q^{-1}-Q & D
\end{array}\right] .
$$

We show that for small $\varepsilon>0$ this matrix is positive stable, which implies that $\varepsilon^{-1} G$ is a gyroscopic stabilizer.
Note that all eigenvalues of M_{ε} are perturbations of the (imaginary) eigenvalues of M_{0}. We will show that for each eigenvalue $\lambda_{0} \in \sigma\left(M_{0}\right)=\sigma(G) \cup \sigma(Q G Q) \subset i \mathbb{R}$ of multiplicity k the perturbed matrix M_{ε} has k eigenvalues with positive real part in a neighbourhood of λ_{0}.
Case 1 Assume $\lambda_{0} \in \sigma(G) \backslash \sigma(Q G Q)$.
Then G has an eigenvector $v \in \mathbb{C}^{n}$, so that $\|v\|=1$ and $G v=\lambda_{0} v$. Condition (a) implies that λ_{0} is a simple eigenvalue of M_{0}. A unit eigenvector of M_{0} is given by $v_{0}=[0, v]^{T}$. For small $\varepsilon>0$ a standard perturbation result (e.g. [Stewart and Sun, 1990, Thm. IV 2.3]) gives that M_{ε} has a simple eigenvalue $\lambda_{\varepsilon}=\lambda_{0}+\varepsilon v^{*} D v+\mathcal{O}\left(\varepsilon^{2}\right)$. Since $v^{*} D v>0$ by (b), we have $\lambda_{\varepsilon} \in \mathbb{C}_{+}$.

Case 2 Assume $\lambda_{0} \in \sigma(Q G Q) \backslash \sigma(G)$.
For a corresponding unit eigenvector $w_{0}=[w, 0]^{T}$ of M_{0}, an analogous argument as in the first case shows that
M_{ε} has a simple eigenvalue $\lambda_{\varepsilon}=\lambda_{0}+\varepsilon w^{*} Q D Q w+$ $\mathcal{O}\left(\varepsilon^{2}\right) \in \mathbb{C}_{+}$.

Case 3 Assume $\lambda_{0} \in \sigma(Q G Q) \cap \sigma(G)$.
Then λ_{0} is a double eigenvalue of M_{0}. The corresponding two-dimensional invariant subspace is spanned by vectors v_{0} and w_{0} as in the first two cases. For small $\varepsilon \geq 0$ the perturbed matrix M_{ε} also has a two-dimensional invariant subspace, which depends smoothly on ε and coincides with $\operatorname{Span}\left\{v_{0}, w_{0}\right\}$ for $\varepsilon=0$. The restriction of M_{ε} to this subspace has the representation (e.g. [Stewart and Sun, 1990, Thm. V 2.8])

$$
\begin{aligned}
& {\left[v_{0}, w_{0}\right]^{*} M_{\varepsilon}\left[v_{0}, w_{0}\right]+\mathcal{O}\left(\varepsilon^{2}\right) } \\
= & \lambda_{0} I+\left[\begin{array}{cc}
v^{*} D v & v^{*}\left(Q^{-1}-Q\right) w \\
w^{*}\left(Q-Q^{-1}\right) v & w^{*} Q D Q w
\end{array}\right]+\mathcal{O}\left(\varepsilon^{2}\right) .
\end{aligned}
$$

The 2×2-matrix in the previous term is positive stable, since it has positive trace and positive determinant. Thus M_{ε} has two positive stable eigenvalues (counting multiplicity) in a neighbourhood of λ_{0}.

If $\frac{\operatorname{tr} D}{n} \leq \frac{\operatorname{tr} Q D Q}{\operatorname{tr} Q^{2}}$ we consider $\tau=\frac{\operatorname{tr} D}{n}$, so that $\operatorname{tr} D_{\tau}=0$ and $\operatorname{tr} Q D_{\tau} Q \geq 0$. Otherwise, let $\tau=\frac{\operatorname{tr} Q D Q}{\operatorname{tr} Q^{2}}$, and we have $\operatorname{tr} D_{\tau} \geq 0$ and $\operatorname{tr} Q D_{\tau} Q=0$.
In the latter case, we put $\tilde{D}_{\tau}=Q D_{\tau} Q$ and $\tilde{Q}=$ Q^{-1}. Suppose there exists a skew-symmetric \tilde{G} such that $\tilde{v}_{i}^{*} \tilde{D}_{\tau} \tilde{v}_{i}=0$ for any orthonormal set of pairwise complex conjugate eigenvectors \tilde{v}_{i} of \tilde{G} and $\tilde{w}_{i}^{*} \tilde{Q} \tilde{D}_{\tau} \tilde{Q} \tilde{w}_{i} \geq 0$ for any orthonormal set of pairwise complex conjugate eigenvectors \tilde{w}_{i} of $\tilde{Q} \tilde{D} \tilde{Q}$.
Then for the skew-symmetric $G=Q^{-1} \tilde{G} Q^{-1}$ we have $v_{i}^{*} D v_{i} \geq 0$ for any orthonormal set of pairwise complex conjugate eigenvectors $v_{i}=\tilde{w}_{i}$ of G and $w_{i}^{*} Q D Q w_{i} \geq 0$ for any orthonormal set of pairwise complex conjugate eigenvectors $w_{i}=\tilde{v}_{i}$ of $Q D Q$.
Hence it suffices to consider $\operatorname{tr} D_{\tau}=0$ and $\operatorname{tr} Q D_{\tau} Q \geq 0$.
Problem 3. For symmetric matrices $D, Q \in \mathbb{R}^{n \times n}$ satisfying $Q>0, \operatorname{tr} D=0$ and $\operatorname{tr} Q D Q \geq 0$ find $G=G^{T}$ so that (a), (b), (c) in Prop. 2 hold for $\tau=0$.

Note that the condition $\operatorname{tr} D=0$ implies the existence of a unit vector $u \in \mathbb{R}^{n}$ satisfying $u^{T} D u=0$, a fact, we will use repeatedly. Note further that in the case that Q is the identity matrix Problem 3 has been solved e.g. in Crauel et al. [2007]. Hence, from now on we assume that Q is not a multiple of the unit matrix.

5. THE 3-DIMENSIONAL CASE

Proposition 4. Let $D, Q \in \mathbb{R}^{3 \times 3}$ with $Q>0$ and $\operatorname{tr} D=0$. Choose $\omega \in \mathbb{R} \backslash\{0\}$ and an orthonormal basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of \mathbb{R}^{3} so that $u_{1}^{*} D u_{1}=0$. Then

$$
G=\left[u_{1}, u_{2}, u_{3}\right]\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & \omega \\
0 & -\omega & 0
\end{array}\right)\left[u_{1}, u_{2}, u_{3}\right]^{T}
$$

solves Problem 3.
Proof. By construction, $v_{1}=u_{1}$ is an eigenvector for the eigenvalue 0 of G. Since G is skew-symmetric, the eigenvectors are orthogonal and the eigenvectors v_{2}, v_{3} for
the imaginary eigenvalues can be assumed to be complex conjugate and normalized.
By (3) it suffices to show that $\operatorname{tr}_{\text {Span }\left\{v_{2}, v_{3}\right\}} D \geq 0$. From $\operatorname{Span}\left\{v_{2}, v_{3}\right\}=\operatorname{Span}\left\{u_{2}, u_{3}\right\}$ it follows that

$$
\begin{aligned}
\operatorname{tr}_{\text {Span }\left\{v_{2}, v_{3}\right\}} D & =\operatorname{tr}_{\text {Span }\left\{u_{2}, u_{3}\right\}} D \\
& =\operatorname{tr} D-\operatorname{tr}_{\text {Span }\left\{u_{1}\right\}} D=0 .
\end{aligned}
$$

Since $Q G Q Q^{-1} v_{1}=0$, it follows that $w_{1}=\frac{Q^{-1} v_{1}}{\left\|Q^{-1} v_{1}\right\|}$ is an eigenvector for the eigenvalue 0 of $Q G Q$. Since $w_{1}^{*} Q D Q w_{1}=0$, we have $\operatorname{tr}_{\operatorname{Span} w_{1}} D=0$. Let w_{2}, w_{3} denote the other eigenvectors of $Q D Q$. We use (3) again and get

$$
\begin{aligned}
\operatorname{tr}_{\text {Span }\left\{w_{2}, w_{3}\right\}} Q D Q & =\operatorname{tr} Q D Q-\operatorname{tr}_{w_{1}} Q D Q \\
& =\operatorname{tr} Q D Q \geq 0
\end{aligned}
$$

which completes the proof.

6. THE 4-DIMENSIONAL CASE

In the 3-dimensional case, we exploited the fact that the skew-symmetric matrices $G, Q G Q \in \mathbb{R}^{3 \times 3}$ both have a zero eigenvalue, and the corresponding eigenvectors are related via multiplication with Q^{-1}. Now we construct $G \in \mathbb{R}^{4 \times 4}$ with a double eigenvalue zero, allowing us to identify spaces containing eigenvectors of $Q G Q$. Then we use a perturbation argument to move the zero eigenvalues along $i \mathbb{R}$.
Proposition 5. For $\delta \in \mathbb{R}$ and an orthogonal matrix $Z=$ $\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \in \mathbb{R}^{4 \times 4}$ set

$$
G_{\delta}=Z\left(\begin{array}{rrrr}
0 & \delta & 0 & 0 \tag{6}\\
-\delta & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right) Z^{T}
$$

If (b), (c) in Prop. 2 hold for $G=G_{0}$ and some $\tau>0$, then there exists $\delta \neq 0$ so that (a), (b), and (c) also hold for G_{δ} and $\tau / 2$.

Proof. By continuity of eigenvalues, it is clear that (a) holds for small $|\delta| \neq 0$.
Using (3) and the structure of G_{δ} we conclude that assumption (b) is equivalent to $\operatorname{tr}_{\text {Span }\left\{z_{1}, z_{2}\right\}} D_{\tau} \geq 0$ and $\operatorname{tr}_{\text {Span }\left\{z_{3}, z_{4}\right\}} D_{\tau} \geq 0$, independently of $\delta \in \mathbb{R}$.
To verify (c), note that $Q G_{\delta} Q$ has two conjugate pairs of imaginary eigenvalues, which we denote by $\pm \lambda_{\delta}$ and $\pm \mu_{\delta}$. These depend continuously on δ (where $\lambda_{0}=0$ and $\mu_{0}=i$). The same is true (e.g. Stewart and Sun [1990]) for the invariant subspaces

$$
\begin{aligned}
& \mathcal{V}_{\lambda}(\delta):=\operatorname{Ker}\left(\left(Q G_{\delta} Q\right)^{2}+\left|\lambda_{\delta}\right|^{2} I\right), \\
& \mathcal{V}_{\mu}(\delta):=\operatorname{Ker}\left(\left(Q G_{\delta} Q\right)^{2}+\left|\mu_{\delta}\right|^{2} I\right) .
\end{aligned}
$$

By assumption for $\delta=0$ and $\eta=\tau$ we have

$$
\begin{aligned}
& \operatorname{tr}_{\mathcal{V}_{\lambda}(\delta)} Q D Q \geq \eta \operatorname{tr}_{\mathcal{V}_{\lambda}(\delta)} Q^{2}>0, \\
& \operatorname{tr}_{\mathcal{V}_{\mu}(\delta)} Q D Q \geq \eta \operatorname{tr}_{\mathcal{V}_{\mu}(\delta)} Q^{2}>0 .
\end{aligned}
$$

By continuity, the same holds for $\eta=\tau / 2$ and sufficiently small δ. Together with (3) this completes the proof.

Thus, we can relax the conditions in Problem 3 slightly.

Problem 6. For symmetric matrices $D, Q \in \mathbb{R}^{4 \times 4}$ satisfying $Q>0, \operatorname{tr} D=0$ and $\operatorname{tr} Q D Q \geq 0$, find G_{0} as in (6) so that $\operatorname{tr}_{\operatorname{Ker} G_{0}} D=0$ and $\operatorname{tr} Q D Q \geq \operatorname{tr}_{\text {Ker } Q G_{0} Q} Q D Q \geq 0$.

Let $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ denote an orthonormal set of eigenvectors of Q with corresponding eigenvalues $\lambda_{k}>0$. We consider the numbers $u_{i}^{*} D u_{i}$. Since $\operatorname{tr} D=0$ we either have $u_{i}^{*} D u_{i}=0$ for all i or some of these numbers are positive and some are negative. In the following propositions, we make a complete distinction between all possible cases.
Proposition 7. Assume that for some ordering of the u_{i} the matrices

$$
\begin{aligned}
K_{1} & =\left(\begin{array}{ll}
u_{1}^{*} D u_{1} & u_{1}^{*} D u_{2} \\
u_{2}^{*} D u_{1} & u_{2}^{*} D u_{2}
\end{array}\right) \\
K_{2} & =\left(\begin{array}{ll}
u_{3}^{*} D u_{3} & u_{3}^{*} D u_{4} \\
u_{4}^{*} D u_{3} & u_{4}^{*} D u_{4}
\end{array}\right)
\end{aligned}
$$

are each either indefinite or singular. Then there exists a skew-symmetric G_{0} solving Problem 6.

Proof. By our assumptions on K_{1} and K_{2}, there exist normalized vectors $z_{1} \in \operatorname{Span}\left\{u_{1}, u_{2}\right\}$ and $z_{2} \in$ $\operatorname{Span}\left\{u_{3}, u_{4}\right\}$ with $z_{1}^{*} D z_{1}=z_{2}^{*} D z_{2}=0$. Let $Z=$ $\left[z_{1}, z_{2}, z_{3}, z_{4}\right] \in \mathbb{R}^{4 \times 4}$ be orthogonal and define G_{0} as in (6). Then $\operatorname{Span}\left\{z_{1}, z_{2}\right\}=\operatorname{Ker} G_{0}$ and $\operatorname{tr}_{\operatorname{Ker} G_{0}} D=0$.

Again by construction, $\left\{Q^{-1} z_{1}, Q^{-1} z_{2}\right\}$ is an orthogonal basis of $\operatorname{Ker} Q G_{0} Q$ and

$$
z_{1}^{*} Q^{-1} Q D Q Q^{-1} z_{1}=z_{2}^{*} Q^{-1} Q D Q Q^{-1} z_{2}=0
$$

Hence $\operatorname{tr}_{\text {Ker } Q G_{0} Q} Q D Q=0$, i.e. G_{0} solves Problem 6 .
Note, that the assumptions of Prop. 7 may only fail, if three of the numbers $u_{i}^{*} D u_{i}$ are positive and one is negative, or vice versa.
Proposition 8. Assume that $u_{i}^{*} D u_{i}<0$ for exactly one fixed $i \in\{1,2,3,4\}$ and $u_{k}^{*} D u_{k}>0$ for all $k \neq i$.

Assume further that

$$
K_{m n}=\left(\begin{array}{cc}
u_{n}^{*} D u_{m} & u_{n}^{*} D u_{n} \\
u_{n}^{*} D u_{m} & u_{n}^{*} D u_{n}
\end{array}\right)
$$

be nonnegative definite for every choice of distinct $m, n \in$ $\{1,2,3,4\} \backslash\{i\}$.
Then there exists a skew-symmetric G_{0} solving Problem 6.

Remark 9. We can fix j, m, n arbitrarily provided that $\{i, j, m, n\}=\{1,2,3,4\}$. Thus we may assume $\lambda_{j}, \lambda_{m}, \lambda_{n}$ to be ordered arbitrarily.
For any such choice, $K_{i j}=\left(\begin{array}{cc}u_{i}^{*} D u_{i} & u_{i}^{*} D u_{j} \\ u_{j}^{*} D u_{i} & u_{j}^{*} D u_{j}\end{array}\right)$ necessarily is indefinite. If $K_{m n}$ was not nonnegative definite, then it would be indefinite or singular, and we could apply Prop. 7.

Proof. We denote the eigenvalues of $K_{i j}$ by μ_{i}, μ_{j} and those of $K_{m n}$ by μ_{m} and μ_{n}, where in accordance with our assumptions $\mu_{i}<0, \mu_{j}>0$, and $\mu_{n} \geq \mu_{m} \geq 0$. Since $\operatorname{tr} D=\mu_{i}+\mu_{j}+\mu_{m}+\mu_{n}=0$, we have $\mu_{i} \leq-\mu_{m}-\mu_{n}$. Thus $\left[\mu_{j}, \mu_{i}\right] \supset\left[-\mu_{m},-\mu_{n}\right]$, i.e. (e.g. [Bhatia, 1997, Ex. I.2.9])

$$
\left\{x_{1}^{*} K_{i j} x_{1} \mid\left\|x_{1}\right\|=1\right\} \supset\left\{-x_{2}^{*} K_{m n} x_{2} \mid\left\|x_{2}\right\|=1\right\} .
$$

Thus, for each normalized $z_{2} \in \operatorname{Span}\left\{u_{m}, u_{n}\right\}$ there is a normalized $z_{1}=z_{1}\left(z_{2}\right) \in \operatorname{Span}\left\{u_{i}, u_{j}\right\}$ so that

$$
\begin{equation*}
z_{1}^{*} D z_{1}=-z_{2}^{*} D z_{2} \tag{7}
\end{equation*}
$$

We can choose $z_{1}=f(\alpha)=\cos (\alpha) \tilde{u}_{i}+\sin (\alpha) \tilde{u}_{j}$ with $\alpha \in[0, \pi / 2]$, where $\tilde{u}_{i}, \tilde{u}_{j}$ are orthonormal and $\left[\tilde{u}_{i} \tilde{u}_{j}\right]^{*} D\left[\tilde{u}_{i} \tilde{u}_{j}\right]=\operatorname{diag}\left(\mu_{i} \mu_{j}\right)$. Then the mapping $g: \alpha \mapsto$ $f(\alpha)^{*} D f(\alpha)$ is continuous and strictly monotonically increasing and therefore continuously invertible. Since the mapping $z_{2} \mapsto z_{2}^{*} D z_{2}$ is also continuous, we can assume the mapping $z_{2} \mapsto z_{1}\left(z_{2}\right)=z_{1}\left(g^{-1}\left(z_{2}^{*} D z_{2}\right)\right)$ to be continuous.
We now consider three different cases.
(i) Assume $\lambda_{i}=\max _{k} \lambda_{k}$. Since

$$
\begin{aligned}
0 & \leq \operatorname{tr} Q D Q=\sum_{k=1}^{4} u_{k}^{*} Q D Q u_{k} \\
& =\sum_{k=1}^{4} \lambda_{k}^{2} u_{k}^{*} D u_{k} \leq \lambda_{i}^{2} \sum_{k=1}^{4} u_{k}^{*} D u_{k}=0,
\end{aligned}
$$

it follows $\lambda_{i}=\lambda_{k}$ for all k, i.e. $Q=\lambda_{k} I$. But this case was excluded at the end of Sec. 4.
(ii) Let $\min _{k} \lambda_{k}<\lambda_{i}<\max _{k} \lambda_{k}$ and assume without loss of generality that $\lambda_{m} \leq \lambda_{i}, \lambda_{j} \leq \lambda_{n}$. Then

$$
\begin{aligned}
& \lambda_{m}^{-1}=\left\|Q^{-1} u_{m}\right\| \geq\left\|Q^{-1} z_{1}\left(u_{m}\right)\right\| \\
& \lambda_{n}^{-1}=\left\|Q^{-1} u_{n}\right\| \leq\left\|Q^{-1} z_{1}\left(u_{n}\right)\right\|
\end{aligned}
$$

By the mean value theorem there exists a normalized $z_{2}=\cos (\beta) u_{m}+\sin (\beta) u_{n} \in \operatorname{Span}\left\{u_{m}, u_{n}\right\}$ so that

$$
\begin{equation*}
\left\|Q^{-1} z_{2}\right\|=\left\|Q^{-1} z_{1}\left(z_{2}\right)\right\| \tag{8}
\end{equation*}
$$

We extend $z_{1}=z_{1}\left(z_{2}\right)$ and z_{2} to an orthogonal matrix $Z=\left[z_{1}, \ldots, z_{4}\right]$ and define G_{0} as in (6).
Then $\operatorname{Span}\left\{z_{1}, z_{2}\right\}=\operatorname{Ker} G_{0}$ and $\operatorname{tr}_{\operatorname{Ker} G_{0}} D=0$. Moreover, $\left\{Q^{-1} z_{1}, Q^{-1} z_{2}\right\}$ is an orthogonal basis of $\operatorname{Ker} Q G_{0} Q$ and (using (7) and (8)) we have

$$
\operatorname{tr}_{\text {Ker } Q G_{0} Q} Q D Q=\frac{z_{1}^{*} D z_{1}}{\left\|Q^{-1} z_{1}\right\|^{2}}+\frac{z_{2}^{*} D z_{2}}{\left\|Q^{-1} z_{2}\right\|^{2}}=0
$$

Hence G_{0} solves Problem 6.
(iii) Let $\lambda_{i}=\min _{k} \lambda_{k}$ and assume $\lambda_{m} \geq \lambda_{j}$.

Let $z_{2}=u_{m}$ and $z_{1}=z_{1}\left(z_{2}\right) \in \operatorname{Span}\left\{u_{i}, u_{j}\right\}$. Then

$$
\lambda_{i}^{-2} \geq\left\|Q^{-1} z_{1}\right\|^{2} \geq \lambda_{j}^{-2} \geq \lambda_{m}^{-2}=\left\|Q^{-1} z_{2}\right\|^{2}
$$

With G_{0} again as in (6), we have $\operatorname{tr}_{\text {Ker } G_{0}} D=0$ and

$$
\operatorname{tr}_{\operatorname{Ker} Q G_{0} Q} Q D Q=\frac{z_{1}^{*} D z_{1}}{\left\|Q^{-1} z_{1}\right\|^{2}}+\frac{z_{2}^{*} D z_{2}}{\left\|Q^{-1} z_{2}\right\|^{2}} \geq 0
$$

because $-z_{1}^{*} D z_{1}=z_{2}^{*} D z_{2}=u_{m}^{*} D u_{m}$.
On the other hand

$$
\begin{aligned}
\operatorname{tr}_{\text {Ker } Q G_{0} Q} Q D Q & =\frac{z_{1}^{*} D z_{1}}{\left\|Q^{-1} z_{1}\right\|}+\frac{z_{2}^{*} D z_{2}}{\left\|Q^{-1} z_{2}\right\|} \\
& \leq u_{m}^{*} D u_{m}\left(\lambda_{m}^{2}-\lambda_{i}^{2}\right) \\
& \leq \sum_{k=1}^{4} \lambda_{i}^{2} u_{k}^{*} D u_{k}=\operatorname{tr} Q D Q
\end{aligned}
$$

Again G_{0} solves Problem 6.

Finally we consider the case, where three of the numbers $u_{i}^{*} D u_{i}$ are negative and one is positive.
Proposition 10. Assume that $u_{i}^{*} D u_{i}>0$ for exactly one fixed $i \in\{1,2,3,4\}$ and $u_{k}^{*} D u_{k}<0$ for all $k \neq i$.

Assume further that

$$
K_{m n}=\left(\begin{array}{cc}
u_{m}^{*} D u_{m} & u_{m}^{*} D u_{n} \\
u_{n}^{*} D u_{m} & u_{n}^{*} D u_{n}
\end{array}\right)
$$

be nonpositive definite for every choice of distinct $m, n \in$ $\{1,2,3,4\} \backslash\{i\}$.
Then there is a skew-symmetric G_{0} solving Problem 6.
Proof. The proof is analogous to the proof of Prop. 8 and omitted for brevity.

Since our distinction of cases is complete we have proven the following result.
Theorem 11. Let D and $Q>0$ be in $\mathbb{R}^{4 \times 4}$ with $\operatorname{tr} D, \operatorname{tr} Q D Q>0$. Then there exists a gyroscopic stabilizer.

7. NUMERICAL EXAMPLE

Consider the system given by

$$
0=\ddot{x}+\left(\begin{array}{rrr}
-2 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 0
\end{array}\right) \dot{x}+\left(\begin{array}{rrr}
4 & -1 & -3 \\
-1 & 6 & 1 \\
-3 & 1 & 4
\end{array}\right)^{-2} x .
$$

The system is unstable as can be seen by the eigenvalues of the first order representation as in (4), which are $-4.9936,1.7451,0.1156 \pm i 0.7483,0.0228,-0.0055$. As pointed out in section 3, we perform the diagonal shift $D \mapsto \tilde{D}=D-I$, compute the positive definite square root Q of K^{-1}, and construct a matrix G as in proposition 4. A suitable choice for a vector u_{1} with $u_{1}^{*} D u_{1}=0$ is $u_{1}=\sqrt{\frac{12}{7}}\left(\frac{1}{\sqrt{3}} \frac{1}{2} 0\right)^{T}$. We complete u_{1} to an orthonormal basis of \mathbb{R}^{3} and define with

$$
Z=\left(\begin{array}{rrr}
\frac{2}{\sqrt{7}} & \sqrt{\frac{3}{7}} & 0 \\
\sqrt{\frac{3}{7}} & -\frac{2}{\sqrt{7}} & 0 \\
0 & 0 & 1
\end{array}\right), \quad G_{0}=\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

the matrix $G_{1}=Z G_{0} Z^{\prime}$. Now G_{1} solves Problem 3, and for a small ϵ the system

$$
\begin{equation*}
\ddot{x}+\left(D+\frac{1}{\epsilon} G_{1}\right) \dot{x}+K x=0 \tag{9}
\end{equation*}
$$

is stable. With $\frac{1}{\epsilon}=10$, the system has eigenvalues $-0.9161 \pm i 9.3691,-0.7954,-0.3692,-0.0016 \pm i 0.0046$.
Alternatively, if we put

$$
\hat{Z}=\left(\begin{array}{rrr}
0 & \frac{2}{\sqrt{7}} & \sqrt{\frac{3}{7}} \\
0 & \sqrt{\frac{3}{7}} & -\frac{2}{\sqrt{7}} \\
1 & 0 & 0
\end{array}\right),
$$

then with $G_{2}=\hat{Z} G_{0} \hat{Z}^{\prime}$ and the same epsilon as before, the system has eigenvalues $-1.4861 \pm i 9.3944,-0.0130 \pm$ $i 0.7139,-0.0009 \pm i 0.0036$.
With G_{1}, the largest real part of the eigenvalues of system
(9) is smaller than with G_{2}. This suggests that, even
though the eigenvalues of G_{1} and G_{2} are identical, there is a qualitative disparity between them. Also a change in the factor ϵ results in different eigenvalues of the system. A definition of optimality for a pair (ϵ, G) and the formulation of a criterion for optimality remains an open problem for further investigation.

8. CONCLUSION

Using perturbation arguments on eigenvalues, we showed that in \mathbb{R}^{3} and \mathbb{R}^{4} the conditions $\operatorname{tr} D>0$ and $\operatorname{tr} K^{-1} D>$ 0 are not only necessary, as pointed out by Kliem and Pommer [2009], but also sufficient for gyroscopic stabilizability of the system

$$
\ddot{x}+D \dot{x}+K x=0 .
$$

Our hope is that the methods we developed can inductively be extended in order to show sufficiency in higher space dimensions.

REFERENCES

R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.
E. Brommundt. Ein Reibschwinger mit Selbsterregung ohne fallende Kennlinie. Z. Angew. Math. Mech., 75: 11, 811-820, 1995.
H. Crauel, T. Damm, and A. Ilchmann. Stabilization of linear systems by rotation. J. Diff. Eqns., 234:412-438, 2007.
W. Kliem and P. C. Müller. Gyroscopic stabilization of indefinite damped systems. Z. Angew. Math. Mech., 77: S163-S164, 1997.
W. Kliem and C. Pommer. Indefinite damping in mechanical systems and gyroscopic stabilization. Z. Angew. Math. Phys., 60:785-795, 2009.
A.S. Markus L. Barkwell, P. Lancaster. Gyroscopically stabilized systems: A class of quadratic eigenvalue problems with real spectrum. Canad. J. Math., 44(1):42-53, 1992.
P. C. Müller. Asymptotische Stabilität von linearen mechanischen Systemen mit positiv semidefiniter Dämpfungsmatrix. Z. Angew. Math. Mech., 51:T197T198, 1971.
K. Popp and M. Rudolph. Avoidance of Stick-Slip Motion by Vibration Control. Proc. Appl. Math. Mech., 3:120121, 2003.
K. Popp, M. Rudolph, M. Kroeger and M. Lindner. Mechanismen fuer die Entstehung und Vermeidung von reibungsselbsterregten Schwingungen. VDI-Berichte Konstruktion, 06-2004, VDI-Verlag Duesseldorf:75-77, 2004.
G. W. Stewart and Ji-guang Sun. Matrix Perturbation Theory. Computer Science and Scientific Computing. Academic Press, Boston, MA, 1990.

