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Abstract: In this paper we evaluate the potential of Variable Stiffness Actuation to utilize
its inherent joint elasticity and capability to adjust the intrinsic joint stiffness. These abilities
make it possible to realize fundamentally different motion control schemes in comparison to
intrinsically stiff robots. In this paper we treat the problem of how to generate optimally
fast link side velocity at a certain time instant by fully exploiting the elastic energy transfer
effects between motor, joint elasticity, stiffness adjustment mechanism, and link. Based on
optimal control theory we show that it is possible to significantly and optimally exceed the
motor maximum velocity by appropriate motor commands. We solve the problem for models
of increasing complexity in order to consecutively elaborate the core insights into the chosen
problem. Finally, we present experimental results with a VIA joint prototype, confirming the

correctness of the developed formalism.

1. INTRODUCTION

Classical articulated robots are characterized by stiff ac-
tuation with structural elastic effects being certainly un-
wanted. Position accuracy and repeatability are the goals
that are aimed for. If compliance is desired it is realized
via active control, leading to such sophisticated solutions
as for the DLR Lightweight Robot III, Albu-Schéffer et al.
[2007]. The robot utilizes integrated joint torque sensors to
realize e.g. high-performance Cartesian impedance control
above a full state feedback controller for joint vibration
damping. However, recently elastic joints received increas-
ing attention as several interesting properties are achieved,
if significant intrinsic compliance is incorporated into the
design. A general argument in favor of intrinsic joint com-
pliance, apart from its role for joint protection from impact
shocks, is its ability to store and release energy

(1) for decreasing the energy consumption of the system
or
(2) to increase peak power output.

The former has received larger attention especially for
biped walking, Yamaguchi et al. [1998a,b], Vanderborght
et al. [2006]. Our focus, however, lies on the latter as
it allows to considerably increase the link speed above
motor speed level Schempf et al. [1995], Paluska and Herr
[2006], Okada et al. [2002], Haddadin et al. [2007], Wolf
and Hirzinger [2008]. In most cases constant joint elas-
ticity is used (Series Elastic Actuation (SEA)), however,
recently also the concept of Variable Impedance Actuation
(VIA), which can be considered as an extension of SEA
has drawn large attention. The principle of VIA is truly
human-inspired in the sense that it intends to approach
the impedance adjustment capabilities of the human mus-
culoskeletal system. In humans all muscles work in pairs,

* This work has been partially funded by the European Commis-
sion’s Sixth Framework Programme as part of the project VIAC-
TORS under grant no. 231554.
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namely the agonist and the antagonist. For transferring
this design idea to robotic actuation there are numerous
concrete concepts. An overview is e.g. given in van Ham
et al. [2009]. However, their main characteristic is the
need for a second actuator per DoF. Together with a
nonlinear spring characteristic this enables the desired
stiffness adjustment (only very few are capable of damping
variation). How exactly the two actuators contribute to
the equilibrium position motion and stiffness adjustment
depends on the particular design. Typically, they are either
equally affecting both (e.g. antagonism) or one actuator
is responsible for driving the equilibrium point, while the
second one, which is typically much smaller (e.g. Variable
Stiffness or Quasi-Antagonism mechanisms), alters the
joint elasticity characteristic. At DLR we developed an
integrated hand arm system, Grebenstein et al. [2011] that
is fully equipped with variable impedance actuation, c.f.
Fig.1.

Fig. 1. The DLR hand arm system.

As already mentioned the unique characteristic of VIA
is an intrinsically variable impedance element between
actuator and link, c.f. Fig 2. The elastic joint torque
T7(¢,01,02) between motor inertia B (associated with
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Fig. 2. 1-DoF model of a VIA joint.

motor position 6) and link inertia M (associated with link
position ¢) is in general a function of the elastic deflection
o = 0 —q, as well as of the stiffness and damper actuation
variables o1, 02. The desired motor torque is denoted as
T4

As the mechanical complexity and capabilities of such
joints are significantly different from classical stiff ones,
there are still numerous open problems. One of the most
remarkable properties of VIA is that the elastic joint
element can be used to store and release energy by appro-
priate excitation. It is therefore fundamental to analyze
how this property can be used for generating motions
that take advantage of this and significantly enhance the
capabilities of VIA robots in comparison with their stiff
counterparts. Recently, it was shown experimentally that
it is possible to design VIA motions such that the link
side velocity can significantly exceed the maximum motor
velocity, Wolf and Hirzinger [2008]. This is especially useful
for achieving human like peak performance by means of
maximum speed ! .

In this paper we develop the theory to maximize the
link side velocity of a variable impedance joint and verify
the results experimentally. For solving this problem, we
use methods from optimal control theory. In order to
systematically analyze the different effects and constraints
we increase the complexity of the used models and try to
find analytical solutions if possible. Table 1 depicts the
consecutive steps we have made and points out whether
analytical or numerical solutions were obtained. First, the
constant stiffness case (case A) is solved with different
motor models (case B+C+D). Then, the presence of
bounds on the state variables (case E) is incorporated,
the influence of adjusting the stiffness (case F4G) is
anlayzed, and finally experimental results on the DLR
QA-Joint (case H) are discussed. Each step contributes
particular insights, as e.g. the influence of constrained
motor dynamics, constraints on the elastic deflection, or
stiffness adjustment, which makes it possible to formulate
a full view on the problem. As mechanical damping is
usually unwanted due to energetic arguments, most VIA
implementations realize damping via active control and
not through a mechanically complex solution. Therefore,
we do not consider damping in this paper, i.e. D; = 0.
Furthermore, we assume Kj; = o7 for the theoretical
analysis in order to keep it clear for the reader. Therefore,
we use only o to denote the stiffness actuation variable
from now on. However, for a real joint typically there exists
a possibly nonlinear relation between the actuator variable

1 Extreme examples show that humans are capable of generating
enormous joint speeds as e.g. shoulder rotation of 6.900 — 9800 °/s
during a baseball pitch of a professional pitcher Herman [2007]. This
speed range is currently not realizable by robots if the torque range
and the weight of the joint should be also compatible with human
values.

o and the concrete joint stiffness K ;. We will give such an
example in Sec. 6.

2. PROBLEM FORMULATION

As we assume systems which state space equations do
not explicitly depend on time, the description of their
dynamics is a system of differential equations of first order.

x(t) = f(x(t), u(t)), (1)
with x and u being the state vector and control input,
respectively. For achieving an optimal control input, a
general optimality criterion is usually to be chosen such
that the timely evolution of x(¢) and u(t), as well as the
final state of the system x(t;) are weighted with respect
to each other. Therefore, an integral cost functional is a
reasonable choice, as it weighs the final state with the
function h and the timely evolution of the state and control
input with integrating the function g.

Tttt + [ oo ae @)

Together with the Hamiltonian

H(x(t), A1), u(t), ) = g(x(t), ut),t) + AT f(x(t), u(t), 1) (3)
the constrained optimization problem is transformed into
a problem without constraints. However, in order to maxi-
mize the link side velocity at a certain time instant ¢, only,
(2) reduces to:

J = h(x(ty),tr)) = q(ty) (4)
Since no other constraints are taken into consideration (3)
reduces to

H(x, A\ u,t) = AT f(x(t),u(t),t). (5)

For the optimization of the final state the boundary con-
ditions of the adjoint equations result from the transversal
condition

Oh(ty)
v (6)

Together with the initial boundary conditions of the state
space equation and the final boundary conditions of the
adjoint equations this leads to a two point boundary
problem. The partial derivatives of the Hamiltonian with
regard to the state and co-states define a canonical system
of differential equations that needs to be solved:

Alty) =

)

X = N (7)
. oOH
A= o (8)

In the next section we analyze models of increasing com-
plexity in order to elaborate the fundamental aspects
about optimizing the link side velocity at a certain time
instant 7.

3. OPTIMAL CONTROL FOR LINEAR CASES

In this section we treat the constant elasticity case (Kj =
const.). Stiffness adjustment and other nonlinear effects
are discussed in Sec. 4 and Sec. 5. For the first model the
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case | model | solution | achieved insights

A Velocity source + SEA analytical | principal effect of significant joint elasticity

B PT1 + SEA analytical | influence of constrained motor dynamics, 1st order

C PT2 + SEA analytical | influence of constrained motor dynamics, 2nd order

D PT2 + SEA + JTF numerical | influence of joint torque feedback on motor inertia

E PT2 + SEA + JTF + CD numerical | influence of deflection constraints

F Velocity source + VS analytical | principle effect of stiffness adjustment

G Velocity source + VS + CD | numerical | influence of stiffness adjustment and constrained deflection
H PT2 + VS + CMT numerical | real VIA design behavior and constrained motor torque

Table 1. Analyzed models (SEA= Series Elastic Actuation, JTF = joint torque feedback, CD
= constrained deflection, VS = variable stiffness, CMT = constrained motor torque).

| Vel. source (A) | PT1 (B) | PT2 (C) | PT2+7; (D)
o= [ byt m=Kp(0q — 0) m=Kp(0q —0) + Kp(6q — 0) m=Kp(0q —0) + Kp(0q — 0)
1 0 Tm= Bl Tm= Bl Tm= Bl + K;(0 - q)
Mi=K;(0—q . . .. - .
¢ ) M=K (0 —q) Mi=K;(0—q) Mi=K;(0—q)
9 x"=[6qq x"=106q4 x"'= (020044 x"'= 020044
u= 04 u= 04 u= 04 u= 6y
1 = u 1 = u
. T1 = x2 & = a3 iy = x3
= . K . 1 . 1
3 . Gy = Tp(u—.’l:g) i3 = g (Kp(u—z3)+ i3 = 5 (Kp(u—z3)+
To = T3
. 2 @3 = x4 +Kp(z1 — 22)) +Kp(z1 —x2) — Kj(x2 — 24))
i3 = w?(z1 — x2) . .
4 = w?(z1 — 3) T4 = x5 T4 = x5
i5 = w?(z2 — x4) i5 = w?(z2 — x4)
H(x(t), A(t), u(t)) = Mu+ Xaxs
H(x(t), A(t), u(t)) = Au + Aoz f
4 H(x(t), A1), u(t),t) = H(x(t), A(t), u(t), t) = \wa+ f . +A35 (Kp(u—23)+
5 x ) +A35 (Kp(u—x3) + Kp(z1 — x2))+ i
At 4 Aows + Asw? (w1 — @2) | A2 2 (u — w2) + Azza + Aaw? (21 — a3) 5 +Kp(z1 —x2) — Kj(x2 — 74))+
+Aaws + Asw? (z2 — x4) 5
+Aaws + Asw? (z2 — x4)
< N R
N . A= —Agw? ; K i Kp | Ky 2
A= —Agw? s « o = A B2 agw? do =g (BR+52) - xsw
5 ; 2 A = S TP : K ; K
A2= Asw ; ) As = —de+ A3l Az = A2+ AR
Sae —A A3 = Mw . 5 . K 5
e A4 = =3 ).\4:)\5%’ ),\4:_/\3T‘I+>\5w
As = =4 As = =M\
6 AT(tp)=[001] AT(t)=[0001] AT(tf)=[00001] AT(t;)=[00001]
xT(0)=[000] xT(0)=[0000] xT(0)=[00000] xT(0)=[00000]
) Omax, M1 >0 ) Omax, A2>0 ) Omax, A+ IRA >0 Omax, A+ ZRX >0
7| 0= Omin, A1 <0 03 = Omin, A2 <0 03 = Omin, A1+ TP A3 <0 03 = Omin, M+ 2RA3 <0
singular, A\; =0 singular, A2 =0 singular, A + £223 =0 singular, A + £RX3 =0

Table 2. Summary of the investigated linear optimal control problems.

motor behaves as a velocity source, which gives insight
into the principles of utilizing joint elasticity. In order
to investigate the influence of motor dynamics on the
switching trajectory, we then consider the motor to be
position controlled. We investigate both PT1 and PT2
behavior for the controlled motor. In a first step we neglect
the influence of the elastic joint torque feedback on the
motor inertia as this allows to find a closed solution?.
Finally, the feedback of the elastic joint torque is also
considered. The actuating variable w is chosen to be the

2 Please note that the stiffness of the motor PD controller is three
order of magnitudes larger than the joint stiffness. Therefore, the
effect of the elastic torque is expected to be reasonably small to
neglect this effect. Later on this will be confirmed with realistic
simulation parameters. Furthermore, the result for the optimal
control basically leads to switching the motor velocity sign when
the elastic joint torque is zero, i.e. it does not significantly affect the
motor velocity during the switching duration.

desired motor speed 64. The proportional and damping
gain values for the motor controller are denoted as Kp
and Kp, respectively.

As the principal approach is always the same we summa-
rized the relevant equations and conditions for the inter-
ested reader in Tab. 2 and focus only on the most signifi-
cant general insights in the following description. Table 2
lists the system dynamics (1), the state and input vector
(2), the state space equations (3), the Hamiltonian (4), the
adjoint system (5), the boundary conditions (6), and the
solution of the switching system (7). The eigenfrequency

is denoted as w = /K j/M.

Since all system equations (row 3) are linear in w, the
Pontryagin maximum principle leads to bang-bang control.
The optimal switching functions are the terms of the
particular Hamilton (row 4) that linearly depend on u.
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Fig. 3. Solution of the adjoint and system equations.

Together with its final conditions (row 6) the adjoint
equation system (row 5) forms a final value problem.

For case A we obtain following solution for the relevant
adjoint A;.
M =wsin(w(t —ty)) 9)

The switching law is therefore

0% = Omax sgn(sin(w(t — t))). (10)

This rectangular function, which frequency is the reso-
nance frequency of the joint has a phase shift that depends
on ty in order to maximize the link side velocity at this
particular time instant. Figure 3 depicts an example for
the solution of the adjoint and system equation as well as
the input. This result leads to the conclusion that with
half period ¢t = w/(4) the link side velocity is doubled.

As for case A, the optimal control trajectory of case B is
derived also from Pontriyagin’s maximum principle. The
solution is again linear in u and thus of bang-bang type.
The switching times depend for case B on sign(A2), which
is found to be

Kp (t=ty)

Ao (t) = (BZKJC B

— B?K cos (w (t — tf)) (11)
~BKpsin(w(t—t7) VEy M) (Kp2M + K, B2) "
Compared to case A the switching condition consists of
an additional trigonometric and exponential lag term.

However, the principal structure remains the same.

For case C the solution is also similar to the previous ones,
except for some additional trigonometric and exponential
terms. Again, they do not alter the principal switching
structure. The switching condition is

Kp,  KpK3B
AL+ 5 Az = <1 cos (w(t—tg))
K;BKp—KjKp®— Kp*M)VEK; M
+( ! r J ;1 r"M) el sin (w (t —tf)) (12)
X4 (t=tg)(x2+48p) X3 (t=tg)(=x2+xp)
T xixe® T xixe®

with
X1=K;Kp*M+K,;*?B>-2K;BKp M + Kp>M?

X2=1/Kp>—4KpB
X3=1/2K;B (—2K;BKp +2Kp*M + K; Kp\/Kp> —4Kp B+ K; KD2>

X4=1/2K;B (2KJBKP72Kp2M+KJKD \/ Kp® 74KprKJKD2).
(13)

In order to complete the motor model, the feedback of
the elastic joint torque shall be considered now (case D).
Table 2 lists again all relevant equations and also the
switching law. Unfortunately, we did not find an analytical

solution for this system. Therefore, numerical methods
have to be applied. Since the adjoints are not coupled with
the system’s differential equation they can e.g. be solved
with the Runge-Kutta method via numerical integration.

1.5 ideal
1 - — =, (PT1)
< 05 l ——§ (PT1)
8 .

= 0 —— b4 (PT2)
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Fig. 4. Comparison of the different models.

A comparison of the different motor models is depicted in

Fig. 4, showing the dynamic response of 8 for 64, being the
step function. Two main observations can be made: The
significant switching time between PT1 and PT2 and the
negligible influence of the elastic joint torque 7; on the
motor response of the PT2 model.

The main conclusions up to now are

e It is possible to significantly exceed the motor maxi-
mum velocity with only some switching cycles.

e The solution leads to an excitation trajectory that is
directly related to the eigenfrequency of the joint.

e Motor dynamics do not influence the principal switch-
ing structure.

e Every delay element leads to a phase shift of the
switching times.

e Adding the influence of the elastic joint torque 7; does
not significantly affect the result, as the switching
basically occurs during the fully relaxed moment of
the joint.

e Insufficient motor dynamics lead to a saturation of
the characteristic velocity increase curve (not de-
scribed for brevity).

In the next section we discuss the influence of an important
real-world constraint of VIA joints: the elastic deflection
limit pmax-

4. CONSTRAINED DEFLECTION

©max can be expressed as an inequality constraint on
the difference of motor and link side position. Its second
derivative incorporates the control variable. Thus, the
order of the constraint is ¢ = 2 and one contact point
exists.

S(O) = (6 - ) — Pmax < 0 (14)
SWi=(0-4¢ <0 (15)
S@ .= (G- <0 (16)

The formulation of the optimal control problem with con-
straints is based on the model of case D. The Hamiltonian
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is extended by a term that incorporates new Lagrange
multipliers p. In total one obtains an 11th order canonical
system of differential equations with side constraints. For
contact points the conditions given in Bryson and Ho
[1975] count. This leads to a jump in the adjoint variables

. @)
for the contact time ¢;,. Because aasw

p1 = 0 we may write

= 0 and for choosing

_ ds©®
Xa(tf) =Xa(ty ) + 1o y (17)
T2
_ ds©
/\4(tgr) =M\(t ) + o a (18)
x4
The concrete jumping conditions are
Ao () = Aalty ) + o (19)
Ma(ty) =X (ty) = hio-
The additional trivial differential equation is
o = 0. (20)

The full system of equations can be solved with a numeri-
cal multiple-shooting method as e.g. described in Bulirsch
and Stoer [1978], Carl-Cranz-Gesellschaft [1981].

—

= = =0, [rad/s]

—_

o
o
o
o
o
o

Fig. 5. Optimization with limited elastic deflection. sf
denotes the switching function.

Figure 5 depicts such a numerical solution of the multi-
point boundary value problem (MPBVP) obtained with
the multiple-goal method implemented with the program
BNDSCO, Oberle [2001]. Important to notice is that for
the constrained deflection case the optimization aims at
the maximal elastic deflection (upper right). The optimal
switching time is rather defined by keeping the constraints
than resonant excitation.

In the next section we discuss to what extent the stiffness
adjustment during motion contributes to an increase in
maximum link side velocity.

5. STIFFNESS ADJUSTMENT

First, we take into consideration the influence of stiffness
adjustment without a deflection constraint and then ana-
lyze the effect such limits have.

5.1 Unconstrained deflection

In order to elaborate the effect of stiffness adjustment, we
choose the underlying model for this analysis to be the
one of case A. The joint stiffness is now considered as an
additional control input. Overall, the system equations are

0= /éd dt - with fpin < 0 < Oax (21)

Mq:KJ(t)(e_q) with KJ,min < KJ(t) < KJ,maxu

(22)
with x = [0 ¢ ¢]T being the state vector and u =
[0a K;(t)]" the control input vector. The canonical
system of differential equations is

i =w (23) A=-dgw? o (26)
by 25 (24) fo=hae?  (27)
Lo U2 _ ;

T3 = i ({E1 $2) (25) )\3 = —)\2. (28)

The corresponding Hamiltonian can be derived as

H(x(t), A(t),u(t),t) = Aius + hows + X353 (21 — 22). (29)

The Hamiltonian is linear in v and us, leading directly to
following switching laws.

. emaXa /\1 > 0
03=19 Omin, M <0 (30)
singular, Ay =0
KJ,maxu /\3 11]\—412 >0
K;,d = KJ7min, /\3351—]\_4352 <0 (31)

singular, A3#32 =0

Due to the bang-bang structure of the desired stiffness the
solution of the adjoints is similar to (9). However, this time

a variable eigenfrequency characterizes the result .

AL = \/%sin (\/%(t - tf)> (32)
N = cos (\/% (t - m) (33)

For the present case two adjoints influence the switching
condition. A; determines the excitation of the system with

f4 in resonance, depending on the current eigenfrequency.
The stiffness switching function is characterized by two
terms. First, the sign of the elastic deflection sign(z; — x2)
and secondly, the switching function As.

5.2 Constrained deflection

Based on Sec. 4 it is clear that the stiffness adjustment
between maximal elastic deflection (maximum potential
energy stored) and the time instant of maximal velocity
(moment of launch) is critical. Therefore, we investigate
the maximization of the Hamiltonian (29) during this
particular time interval. The term containing the stiffness
uz and the elastic deflection (z1 — z3) = (0 — q) is to be
maximized.

max {)\3%(:171 - xg)} .

(x1 — m2) is always larger than zero between the moment
of its maximal value and launch. The maximal value
will be achieved the earliest at ¢y — % Due to the

transversality condition Oh(x(t;))/0xs = 04¢(ty)/0¢ = 1

(34)

3 Pease note that the eigenfrequency is not continuously varying,
but switching between its minimum and maximum value.
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the last adjoint A3 reaches its maximal value A3 =1 at ty
(see (33)). Furthermore, it changes its sign also at a quarter
of the periodicity before the launch time. The switching
function A3 is consequently positive in the considered time
interval. This leads, according to the maximum principle,
to maximizing the stiffness (see (31)) towards the moment
of launch.

K;:KJ,max ty <t <ty (35)

Up to now, we assumed that the stiffness trajectory
before the boundary point does not influence the end
velocity. Therefore, it seems reasonable to set the stiffness
to its maximum value during the throwing trajectory
without additionally adjusting the stiffness. However, from
a practical point of view it can be necessary to start the
motion at low stiffness adjustment and enlarge it towards
the launch time. This can have three main reasons:

e The motor dynamics is not sufficient to excite the
joint at maximum stiffness at the corresponding
eigenfrequency.

e The motor power is not sufficient to deflect the joint
with an adequately low number of switching cycles.

e Limits on the elastic deflection can lead to higher
energy storage for lower stiffness ranges due to higher
possible deflection than for larger stiffness presets.

TJ TJ

o = high o = high

.
|
I
I
I
I
I
/o =low
I
I
o = low :
I

Hlow

high
Pmax

Pmax) P high | v

Fig. 6. Deflection limits ¢,.x for different stiffness presets
o. The left figure shows a design, where @nax is
constant for every o and the right one depicts a

functional relationship between ¢,.x and o.

The last aspect can be explained with Fig. 6 and is caused
by the particular implemented working principle of the
VIA mechanism?. The left figure shows two different
linear stiffness curves for which the maximum deflection is
constant for all presets. On the right figure characteristics
are depicted, where a functional relationship between
maximum deflection and stiffness preset exists.

First, let us discuss the former. According to the maximum
principle the Hamiltonian is maximized through the entire
motion process and therefore the joint stiffness as well.
Consequently, the potential energy stored in the joint
elasticity is maximized for every deflection. This induces
that it is not optimal to change the stiffness, on the
contrary, it reduces the achievable link velocity.

For the latter characteristics the maximum elastic energy
that can be stored depends on the deflection. For large
deflection a soft preset and for small deflection a stiff
one are to be preferred. Maximization of joint torque is
therefore directly coupled with adjusting stiffness along
the admissible deflection.

4 Please note that we describe the fact with varying linear joint
stiffness, i.e. there exists a directly proportional relation between
o and K j. However, the same statements hold also for a possibly
nonlinear relation as for the QA-Joint that is discussed in the next
section.

Whether the stiffness adjustment is energy efficient de-
pends on the particular design. If internal contraction is
necessary to adjust a certain stiffness, this of course costs
a significant amount of energy before one can actually use
it. Apart from that, the stiffness adjustments during the
dynamic deflection phase does always cost the energetic
difference between the respective stiffness (7, ¢) curves
plus some parasitic effects. Basically, the energetic require-
ment given by the desired task one intends to solve de-
fines therefore the requirements to the stiffness adjustment
mechanism by means of achievable power.

Next, we discuss the analysis for a concrete joint design
and present various experimental results.

6. ANALYSIS FOR THE QA-JOINT

In this section we apply the elaborated insights to a
prototypical VIA design, the DLR QA-Joint® .

6.1 Without stiffness adjustment

For the QA-Joint, Eiberger et al. [2010], the elastic joint
torque 77 is defined as

Ty = 40(615@)7‘7) - 615(7%7‘7)), (36)
so the mapping from stiffness actuator to stiffness ¢ —
K; = 075/0q is a nonlinear function. With the state
vector xI = [04 6 0 q ¢, u = ; and initial conditions
xT(0) = [0 0 0 0 0] we obtain the following system

of differential equations when assuming elastic torque
feedback and PT2 motor behavior.

T =1u i?zzxg iSZ%(%m_TJ) 334:$5 15:%(37)

Tm denotes the bounded motor torque

max
Tm,max . Tm,d Z Tm
Tm = Tim,d T < Tmyd < T ™
min
Tm,min Tm,d < Tm,d7

(38)

with 7,4 = Kp(u — x3) + Kp(x1 — x2) being the desired
motor torque from the PD controller. The Hamiltonian is

1 1
H() = Mu+ X\x3 + )\SE(%m — 7',](0')) + M5 + )\5MT(1(U).

39
The optimal control problem to be solved consisté o)f
a system of differential equation of 11th order (adjoint
and system equations), including the additional trivial
differential equation if taking into account the elastic
deflection limit with one boundary point, see Sec. 4. The
nonlinearity causes a coupling of the adjoint and state
equations, leading to a MPBVP with separated initial
and end conditions for the canonical system of differential
equations®. The limits of motor torque eventually lead
to a necessary formulation of boundary control. Solving
this problem with multi-goal methods turned out to be
very unstable. This is because on the one side for n
nodes 5n starting conditions need to be estimated and
their deviation from the solution is highly influencing
the convergence of the method. Furthermore, a physical
interpretation of the adjoint variables is also not given.
Thus, the estimation of their start values, which would
lead to a solution is not straight forward.

5 For details on the joint design, please refer to Eiberger et al. [2010].
6 The adjoint system is given in Appendix A.
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A possibility to solve this optimization is a parameter es-
timation method by utilizing the information that the op-
timal control trajectory shows bang-bang behavior (which
comes from the linear occurrence of the input into the
state equation). This is also independent from the limit
in motor torque 7, (see (38)), as the principal structure
of the Hamiltonian remains the same regardless of the
saturation 7 :

HA®),u) = (M + A B2) w,
H(A(t), u(t) = Mu,

The parameter to be estimated is the switching time.
The optimization is carried out by multiple solving of the
system equations with the jumping times in the control
variable being timely varied via appropriate optimization.
The used algorithm is the Nelder-Mead simplex downhill
method with the following optimization criterion.

(40)

(7—7n,d < 7—7n7min) \ (7—7n,d > 7—7n,max) (41)

Tm,min < Tm,d < Tm,max

J=—q+J, (42)

J = 0 Pmin < @ < Omax
P exp (|| — ¢Ymax) I > @max

Complying with the constraints is ensured with the
penalty term J,.

(43)
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Fig. 7. Final link velocity as a function of motor velocity.

Under the premise of achieving maximal deflection with
one switching cycle (throwing with striking out once), a
limited velocity range for the position motor complies.
On the one hand, a minimum velocity for achieving the
maximal deflection is needed and on the other side, there
exists a maximum velocity at which the constraint can
still be ensured. The simulation results are depicted in
Fig. 7 and Fig. 8. The red marked points on the theoretical
graphs were experimentally verified (green crosses).

Figure 7 shows the absolute achievable final velocity, as
a function of commanded motor velocity characterized by
the almost linear relationship. This induces a continuous
velocity increase with stored potential energy. Further-
more, it becomes clear that too low elasticity leads to a
degradation of achievable link velocity. The relative veloc-
ity increase with respect to the motor velocity at final time
is depicted in Fig. 8. If this relation is considered as the

7 Please note that only the relevant term of the Hamiltonian is
shown, which linearly depends on wu.
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Fig. 8. Relative final link side velocity as a function of
motor velocity.

speed gain® of the elastic mechanism, it can be stated that
it degrades with increasing motor velocity and increasing
stiffness. As already explained, it is necessary to drive with
higher motor velocities to achieve the maximum deflection
for low stiffness. For the QA-Joint the largest speed gain
can be obtained at 5 = 65 °/s and moderate stiffness.
This is equivalent to an efficiency of 2.7.
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Fig. 9. Comparison of simulation and measurements for
different stiffness presets. The upper row shows the

motion for §; = 60 °/s and o = 3 °. The lower

row depicts the results for §; = 100 °/s, o0 = 11 °.
The subscript mdl indicates the simulation and msr
depicts the experimental results.

In Figure 9 the time courses of measurements and simu-
lations for high and low stiffness presets are shown. The
relevant variables are the link side velocity, deflection, and
the elastic joint torque.

e link velocity (left):
The trajectory of the link velocity shows very good
consistency with the simulation. At final time the
velocity is approximately twice the motor velocity.
The deviation in joint torque are almost not reflected
in the velocity profile.

8 Please note that we consider the speed gain to be a relevant quan-
tity, as it relates the achievable link side velocity to the maximum
desired motor velocity.
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e deflection (middle):
In contrast to the simulation a slight exceedance
of the deflection constraints can be observed in the
lower row. This is mainly due to the variance in the
identified stiffness and friction parameters, calibra-
tion errors, and simplified assumptions for the friction
model.

e joint torque (right):
The principal time course of the joint torque confirms
the joint model with respect to the identification
of stiffness and friction. The discontinuities in the
simulation are caused by the Coulomb friction model
during direction changes.

Next, we discuss the effect of stiffness adjustment for the
QA-Joint.

6.2 Stiffness adjustment

For the stiffness adjustment during the motion there are
also some conclusions to be drawn. For the linear joint
stiffness it was shown that the relation between stiffness
and deflection is critical, see Sec. 5.1. For the QA-Joint
this constraint is formally defined as

o> o € [3° 15°]. (44)
For maximizing the Hamiltonian (39), following term
is considered, which explicitly depends on the stiffness
adjustment o.

HA®). x(t), o(t) = (Aﬁ - Asg) ri(o)  (45)

)\*
As assumed in Sec. 5.1 only a stiffening during the re-
laxation phase is essential. Thus, the sign of ¢ does not
change. In Appendix A it is shown that A\* > 0 holds
during the entire adjustment phase. Therefore, 7; has to
be maximized .

Ty = (as — ag)e'®274) — (bg + bR)els(_mﬁ“)] (46)

6150
The maximization of the elastic torque in turn necessitates
the maximization of stiffness, respectively a minimization
of o at every time instant. Taking (44) into account the
optimal stiffness trajectory is

« |3 <3
T T e 3<p<15.

This means that the acceleration torque has to be sus-
tained during relaxation as long as possible. From an en-
ergy point of view the stiffness adjuster injects additional
energy such that the joint maximally stores potential en-
ergy for a certain deflection. The potential energy that can
be converted into kinetic energy is therefore maximized at
the same time.

ty <t <ty (47)

The according experimental verification is depicted in
Fig. 10 and Fig. 11. For a moderate stiffness preset
o = 9 ° the achieved link velocity is 266 °/sec., which
is approximately 20 % higher than without adjustment.
From Figure 11 (left) it can be observed that adjusting
the stiffness according to (47) is not fully achieved due to

too little dynamics of the stiffness motor !°. Nonetheless,

9 Please note that for this case 7; denotes the ideal elastic joint
torque plus a friction model, Eiberger et al. [2010].

10 Please note that the stiffness adjuster is assumed to show ideal
behavior for the simulation.
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Fig. 10. Link side velocity with stiffness adjustment. The
subscript sim indicates the simulation and msr de-
picts the experimental results.
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Fig. 11. Deflection (left) and joint torque (right) with
stiffness adjustment. The subscript sim indicates the
simulation and msr depicts the experimental results.
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a significant velocity increase is observed here as well.
Compared to the constant elasticity case the joint torque
shows an increase from the moment of adjustment on,
confirming the theoretical requirement to maximize the
sustaining torque during relaxation phase.

7. CONCLUSION

In this paper we developed a theoretically sound concept
to achieve an optimal speed gain for Variable Impedance
Actuators based on optimal control theory. It was shown
that intrinsic elasticity can be used to significantly exceed
the maximum motor velocity. Furthermore, depending on
the performance of the stiffness adjustment mechanism,
it is possible to inject energy by altering stiffness in a
timely optimal sense such that the link can even drive
faster than wit constant elasticity only. This of course re-
quires a second actuator for providing the required power.
Maximum elastic deflection, which is the most important
real-world constraint, leads basically to a solution that
aims at fully loading the elastic energy storage without
violating the constraint, i.e. reach the maximally feasible
energetic state for the system prior to releasing the stored
energy into the link. We also verified the schemes on the
DLR QA-Joint, a novel VSA prototype, which is one of
the basis mechanisms for the anthropomorphic DLR hand
arm system. Our future work will deal with the extension
to the N-DoF case.
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Appendix A. SOLVING THE ADJOINT EQUATIONS

In order to confirm the assumption A* > 0 for the exper-
iment carried out in Sec. 6.2, the adjoint equations have
to be solved for the time interval of stiffness adjustment.
Since they do not show discontinuities they can be solved
numerically as a final value problem by utilizing the al-
ready optimized solution of the state equations.

The solution of the adjoint equation systems in the time
interval [ty ty] gives the confirmation that the stiffness
adjustment presented in Sec. 4 is indeed satisfying optimal
control theory. For this, the switching function A* has
to have positive sign in this interval. The system of
differential equation for the adjoints is

A= —/\%Kp (A1)

fo = /\3%((195 — by exp (150 — o)) (A.2)
—(as —ar)exp (15(p — o)) + Kp)

A3 =)o+ JRELS (A.3)

B

- (&% + )\3%) ((bs — br) exp (15(¢ — o)) (A.4)

+(as — ar) exp (15(p — 0)))
As = =\, (A.5)
where ¢ = xy —x4. With final values AT (t;) = [0 0 0 0 1]
the problem can be formulated as final value problem and

e.g. be solved with the Runge-Kutta method. Figure A.1
depicts the solution of the switching function A\* = /\5ﬁ —

/\3%, showing the positive sign over the relevant time
interval.
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