Channel-Hopping Model Predictive Control

K. V. Ling * J. M. Maciejowski ** J. Guo *** E. Siva **

* Nanyang Technological University, Singapore
(ε-mail: ekvling@ntu.edu.sg).
** University of Cambridge, United Kingdom
(ε-mail: {jmm, ex403}@eng.cam.ac.uk)
*** Beijing University of Aeronautics and Astronautics, China
(ε-mail: guojiabuaa@sina.com)

Abstract: In Multiplexed MPC, the control variables of a MIMO plant are moved asynchronously, following a pre-planned periodic sequence. The advantage of Multiplexed MPC lies in its reduced computational complexity, leading to faster response to disturbances, which may result in improved performance, despite finding sub-optimal solution to the original problem. This paper extends the original Multiplexed MPC in a way such that the control inputs are no longer restricted to a pre-planned periodic sequence. Instead, the most appropriate control input channel would be optimised and selected to counter the disturbances, hence the name ‘Channel-Hopping’. In addition, the proposed algorithm is suitable for execution on modern computing platforms such as FPGA or GPU, exploits multi-core, parallel and pipeline computing techniques. The algorithm for the proposed Channel-hopping MPC (CH-MPC) will be described and its stability established. Illustrative examples are given to demonstrate the behaviour of the proposed Channel-Hopping MPC algorithm.

Keywords: Predictive control, distributed control, multiplexed, periodic systems, constrained control, parallel computing.

1. INTRODUCTION

Model Predictive Control (MPC) requires the repeated on-line solution, in real time, of a sequence of optimisation problems. Despite the continually increasing speed and power of computational processors, there are always problems which require speeds beyond the capabilities of current hardware. There is therefore a continuing requirement to find ways of speeding up the solution of MPC problems. Some speed-up may be obtained by effective use of special-purpose hardware, such as ASIC or FPGA (Jerez et al., 2010; Knagge et al., 2009; Ling et al., 2008, 2006). Another way of obtaining speed-up is by algorithm design, either finding faster ways of solving existing problems, or replacing existing problems by approximating problems which can be solved more quickly (Wang and Boyd, 2010).

The scheme proposed in this paper can be viewed as an extension of the Multiplexed MPC (MMPC) scheme (Ling et al., 2005, 2010b), where the control variables of a MIMO plant are moved asynchronously, following a pre-planned periodic sequence. At the core of the MMPC idea is the reduction of computational complexity by optimising with respect to a subset of the decision variables, so that a suboptimal solution can be obtained quickly. Thus, given a fixed computational resource, MMPC can be implemented with a faster sampling rate and this may lead to improved performance in rejecting unknown disturbances (Ling et al., 2010a). In a recent case study of distributed control of a system of agents for a collision avoidance application, Siva et al. (2010) has demonstrated that the computational time of the MMPC scheme scales favourably with the number of agents.

MMPC is inherently suboptimal, trading optimality with computational complexity. In this paper, we proposed to partially mitigate the suboptimality of MMPC, by combining it with the parallel computing capabilities of modern hardware such as multi-core processors, FPGA and GPU.

Specifically, our main proposal addresses the control of multi-input systems. We solve the MPC problem, optimising for only one input channel. We do this in parallel for each input, then select the best solution, as judged by the smallest value of the objective function, and apply that solution to the plant. The resulting control law is one which switches between the various suboptimal controllers, but in no fixed sequence. It is possible that in some circumstances there will be long runs during which the same suboptimal controller is applied repeatedly, and others in which the pattern of switching will appear to be random. Hence we call this scheme Channel-hopping MPC. The proposed algorithm is inherently parallel, exploits multi-core, parallel and pipeline computing techniques, and is suitable for implementation on modern computing platforms such as FPGA or GPU. An FPGA realisation

* The authors would like to acknowledge the support of the EPSRC Grant EP/G030308/1 and EC project TREN/07/FP6AE/S07.71574/037180 IFLY.
which is capable of solving multiple MPC in parallel can be found in Jerez et al. (2011).

In the remaining of the paper, the algorithm for the proposed Channel-hopping MPC (CH-MPC) will be described and its stability established. Illustrative examples are given to demonstrate the behaviour of the proposed Channel-Hopping MPC algorithm.

2. PROBLEM FORMULATION

2.1 Preliminary

Given a \(m \)-input LTI discrete-time linear plant model in the state-space form represented by

\[
x_{k+1} = Ax_k + \sum_{j=1}^{m} B_j u_{j,k}
\]
\[
y_k = C x_k
\]

For simplicity, the plant is assumed to have \(m \) scalar inputs, denoted by \(u_{1,k}, \ldots, u_{m,k} \). The collection of the inputs at time \(k \) is denoted as \(u_k = [u_{1,k} \ldots u_{m,k}]' \). We assume that at time step \(k \) the complete state vector \(x_k \) is known exactly from measurements.

As usual in MPC, we will suppose that constraints may exist on the input moves, \(u \in U \), and on states, \(x \in \mathcal{X} \), where \(U \) and \(\mathcal{X} \) are compact polyhedral sets containing the origin in their interior. In the following, \(K \) denotes a prespecified stabilising linear state feedback gain of (1); \(\mathcal{X}_f \) denotes the set in which none of the constraints is active and the following invariance condition

\[
x \in \mathcal{X}_f \Rightarrow K x \in U \text{ and } (A + BK)x \in \mathcal{X}_f
\]

is satisfied. Of course \(\mathcal{X}_f \subseteq \mathcal{X} \).

2.2 Suboptimal MPC

We first introduce the notion of suboptimal MPC, which optimises only with respect to a subset of decision variables, so that a suboptimal solution can be obtained quickly. Channel-Hopping MPC, or CH-MPC for short, uses suboptimal MPC as an elementary building block. In CH-MPC, for an \(m \)-input plant, there are \(m \) suboptimal MPC, indexed by \(p = 1, \ldots, m \), with the \(p \)th suboptimal MPC optimising with respect to only the \(p \)th control input channel\(^1\).

The \(p \)th suboptimal MPC solves the following finite-time constrained optimisation problem:

\[
\mathcal{P}^p(x_k) : \text{Minimise } \quad J_k = F(x_{k+N|k}) + \sum_{i=0}^{N-1} x_{k+i|k}^T P x_{k+i|k} + \sum_{i=0}^{N-1} \sum_{j=1}^{m} u_{j,k+i|k}^T R u_{j,k+i|k} \\
\quad \text{wrt } u_{p,k+i|k}, \quad i = 0, \ldots, N - 1 \\
\quad \text{s.t. } x_{k+i|k} \in \mathcal{X}_f, \quad u_{j,k+i|k} \in U, \quad \forall i, \forall j \\
\quad x_{k+N|k} \in \mathcal{X}_f \\
\quad u_{k+N|k} = K x_{k+N|k} \\
\quad x_{k+i+1|k} = A x_{k+i|k} + \sum_{j=1}^{m} B_j u_{j,k+i|k} \\
\quad u_{j,k+i|k}, \quad j \neq p, \text{ assumed known}
\]

where \(F(x_{k+N|k}) \geq 0 \) is a suitably chosen terminal cost. We denote the resulting optimizing control sequence as \(u^p \) and the optimal cost \(J^p(x_k) \). Only the first control \(u_{k|k}^p \) is applied to the system at time \(k \), in the usual receding-horizon manner. Note that the vector \(u^p \) contains all the control inputs, but only those inputs related to the \(p \)th control input channel have been optimised. Some assumptions must be made about those future inputs, \(u_{j,k+i|k}, \quad j \neq p \), which are not currently being optimised by the \(p \)th controller. This will be made clear in the next section.

2.3 Channel-Hopping MPC Algorithm

As mentioned earlier, in CH-MPC, at time \(k \), there are essentially \(m \) suboptimal MPC, indexed by \(p = 1, \ldots, m \), running in parallel. Each of these suboptimal MPC, when given the current plant state \(x_k \), optimises with respect to a different subset of decision variables. The candidate control sequence produced by the controller with the smallest cost \(J^o(x_k) = \min J^p(x_k) \), \(p = 1, \ldots, m \), is selected and applied to the plant. The algorithm repeats at the next updating instance. For clarity, we set out the following algorithm which defines Channel-Hopping MPC: Algorithm 1. (CH-MPC).

(1) Initialise by solving problem (2), but optimising over all the variables \(u_{k+i|k} \), i.e. solve the standard \(m \)-input MPC problem.
(2) Apply control optimal move \(u_{o,k|k}^p \)
(3) Store planned moves \(u_{o,k+i|k}^p \), \((i = 1, 2, \ldots, N - 1) \), and \(K x_{k+i|k}^p \).
(4) Pause for one time step, increment \(k \), obtain new measurement \(x_k \).
(5) Solve \(m \) copies of problem (2), indexed by \(p = 1, \ldots, m \). Note that each of these \(m \) problems have a different subset of decision variables as set out in the problem (2).
(6) Evaluate the cost \(J^p(x_k) \), \(p = 1, \ldots, m \) and select the control \(u^p \) which gives the smallest cost, \(J^o(x_k) = \min J^p(x_k) \), \(p = 1, \ldots, m \).
(7) Apply control moves \(u_{o,k|k}^p \) in the receding-horizon manner
(8) Go to step 3.

Note that Step 1 involves solving for inputs across all channels, not just one channel. This type of initialisation requirement is common in distributed MPC. Subsequent

\(^1\) This is just one simple example to illustrate the idea of CH-MPC. Further generalization is possible, see Section 5, for example.
optimisations do not depend on the optimality of this initial solution, only its feasibility. Though the optimisations are performed independently, these m 'suboptimal' controllers share information, in the sense that the complete plant state x_k and the planned future control moves of the controller which produces the lowest cost, u^2_{k+j}, are available to every controller.

3. STABILITY OF CH-MPC

Theorem 1. Channel-Hopping MPC, obtained by implementing Algorithm 1, gives closed-loop stability if the problems are well-posed, and if the terminal cost $F(x)$ satisfies

$$F((A + BK)x) + x'q x + x'K'xKx \leq F(x) \quad (3)$$

Proof. The proof follows standard argument used by most MPC stability proofs (see for example, [Mayne et al. (2000)]), and implicitly assumes that the constrained optimization is feasible at each step. For the nominal case with a perfect model and in the absence of disturbances, if feasible solutions are obtained over an initial period, then feasibility is assured thereafter. We omit the proof here for reason of brevity.

4. ILLUSTRATIVE EXAMPLES

In this section, numerical examples will be given to demonstrate the behaviour of the proposed CH-MPC. In particular, we will illustrate how the proposed CH-MPC algorithm could mitigate sub-optimality, by comparing the closed-loop cost of the standard fully optimised MPC, the CH-MPC, and MMPC (i.e. a version of suboptimal MPC with a pre-determined channel hopping sequence).

As an illustration, we use the following 3-input/3-output continuous-time plant

$$\begin{bmatrix} y_1(s) \\ y_2(s) \\ y_3(s) \end{bmatrix} = \frac{1}{(10s + 1)^2} \begin{bmatrix} 1 & \alpha & \alpha^2 \\
\alpha & 1 & \alpha \\
\alpha^2 & \alpha & 1 \end{bmatrix} \begin{bmatrix} u_1(s) \\ u_2(s) \\ u_3(s) \end{bmatrix}$$

For the three control schemes, we chose the sampling time to be $T_s = 0.5s$, and the tuning parameters were: $N = 20$, $q = C'C$, $r = 0.001I$. To compare the performance of the three control schemes, we perturbed the plant with randomly determined disturbances and compute the closed-loop cost, i.e. the summation of $x_{k+j}C'Cx_{k+j}$ over the entire simulation time.

Fig. 1 shows the closed-loop responses under MPC, CH-MPC and MMPC for the case when $\alpha = 0.4$ and a disturbance introduced in Channel 1. This represents a plant having moderate interactions and the disturbance coincides with the pre-determined sequence of MMPC. It can be seen that all three control schemes gave similar performance with closed-loop costs of 0.3708, 0.3934 and 0.3985 for the MPC, CH-MPC and MMPC schemes respectively. Row 3 of Fig. 1 indicates that the MMPC scheme responded to the disturbance with the pre-determined sequence of $\{1, 2, 3, 1, 2, 3, 1, 2, 3, \ldots\}$. On the other hand, the

Fig. 1. $\alpha = 0.4$, disturbance = channel 1, MPC (black, dash-dot), MMPC (magenta, dotted) and CH-MPC (blue, solid).

Fig. 2. $\alpha = 0.4$, disturbance = channel 2, MPC (black, dash-dot), MMPC (magenta, dotted) and CH-MPC (blue, solid).

Fig. 3. $\alpha = 0.4$, disturbance = channel 3, MPC (black, dash-dot), MMPC (magenta, dotted) and CH-MPC (blue, solid).
Table 1. Comparison of MPC, CH-MPC and MMPC

<table>
<thead>
<tr>
<th>Case</th>
<th>α</th>
<th>Disturbance</th>
<th>MPC</th>
<th>CH-MPC</th>
<th>MMPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>0.1</td>
<td>channel 1</td>
<td>0.3583</td>
<td>0.4561</td>
<td>0.5743</td>
</tr>
<tr>
<td>1.2</td>
<td>0.1</td>
<td>channel 2</td>
<td>0.3583</td>
<td>0.4561</td>
<td>0.5743</td>
</tr>
<tr>
<td>1.3</td>
<td>0.1</td>
<td>channel 3</td>
<td>0.3575</td>
<td>0.4561</td>
<td>0.5743</td>
</tr>
<tr>
<td>2.1</td>
<td>0.4</td>
<td>channel 1</td>
<td>0.3708</td>
<td>0.4538</td>
<td>0.5743</td>
</tr>
<tr>
<td>2.2</td>
<td>0.4</td>
<td>channel 2</td>
<td>0.3839</td>
<td>0.4538</td>
<td>0.5743</td>
</tr>
<tr>
<td>2.3</td>
<td>0.4</td>
<td>channel 3</td>
<td>0.3708</td>
<td>0.4538</td>
<td>0.5743</td>
</tr>
<tr>
<td>3.1</td>
<td>0.8</td>
<td>channel 1</td>
<td>0.4561</td>
<td>0.5959</td>
<td>0.7998</td>
</tr>
<tr>
<td>3.2</td>
<td>0.8</td>
<td>channel 2</td>
<td>0.5253</td>
<td>1.3130</td>
<td>1.5808</td>
</tr>
<tr>
<td>3.3</td>
<td>0.8</td>
<td>channel 3</td>
<td>0.4561</td>
<td>0.9059</td>
<td>1.3654</td>
</tr>
<tr>
<td>4.1</td>
<td>1.2</td>
<td>channel 1</td>
<td>0.4241</td>
<td>1.0006</td>
<td>1.3981</td>
</tr>
<tr>
<td>4.2</td>
<td>1.2</td>
<td>channel 2</td>
<td>0.5638</td>
<td>1.6616</td>
<td>1.6992</td>
</tr>
<tr>
<td>4.3</td>
<td>1.2</td>
<td>channel 3</td>
<td>0.4241</td>
<td>1.0006</td>
<td>1.1287</td>
</tr>
<tr>
<td>5.1</td>
<td>1.6</td>
<td>channel 1</td>
<td>0.3018</td>
<td>0.5401</td>
<td>0.7354</td>
</tr>
<tr>
<td>5.2</td>
<td>1.6</td>
<td>channel 2</td>
<td>0.4412</td>
<td>1.4216</td>
<td>1.5173</td>
</tr>
<tr>
<td>5.3</td>
<td>1.6</td>
<td>channel 3</td>
<td>0.3018</td>
<td>0.5401</td>
<td>0.6332</td>
</tr>
</tbody>
</table>

CH-MPC scheme responded to the same disturbance with the sequence \{1, 2, 1, 2, 1, 3, 2, 1, 2, 3, 2, 1, \ldots\}, as seen in Row 4 of Fig. 1.

Fig. 2 shows the responses when a disturbance was introduced in Channel 2 which does not coincide with the pre-determined sequence of MMPC, Row 4 in Fig. 2 showed that the CH-MPC responded with the sequence \{2, 1, 3, 2, 2, 1, 2, 3, 2, \ldots\}. The closed-loop costs were 0.3839, 0.4478 and 0.6062 for the MPC, CH-MPC and MMPC schemes respectively. Thus, CH-MPC performed significantly better than MMPC for this case.

The responses when a disturbance was introduced in Channel 3 at the time when input 1 was updating in the MMPC scheme, is shown in Fig. 3. The MMPC scheme performed even worse in this case. The closed-loop costs were 0.3708, 0.3934 and 0.6565 for the MPC, CH-MPC and MMPC schemes respectively. On the other hand, CH-MPC scheme achieved the same closed-loop cost as the case when disturbance was introduced in Channel 1. This is to be expected since the plant is symmetrical.

Additional experiments similar to those shown in Figures 1, 2 and 3 were conducted with different values of α over the range 0.1 to 1.6, and the closed-loop costs were tabulated in Table 1. It can be seen that both MPC and CH-MPC gave consistent performance when disturbances were introduced in either channel 1 or channel 3, due to the symmetry of the plant. However, the MMPC scheme, with its prescribed channel-hopping sequence of \{1, 2, 3, 1, 2, 3, \ldots\}, performed worse when disturbance was introduced in channel 3 instead of channel 1. When plant interactions increased with increasing α, performance degradation of CH-MPC and MMPC became apparent and it is to be expected; however, the CH-MPC scheme managed to mitigate some of the sub-optimality inherent in the MMPC scheme.

As an indication of the sub-optimality MMPC and the degree which CH-MPC scheme could expect to mitigate, the mean and standard deviations of the closed-loop costs for different values of α were tabulated in Table 2. These statistics were obtained by running 200 simulations, starting from random initial conditions. Consider the case when α = 0.8. The average costs of CH-MPC is 1.39 times of MPC, and but the cost of MMPC is 1.77 times of MPC. This make CH-MPC cost about 0.79 times of MMPC. From the table, it is apparent that MMPC and CH-MPC are suboptimal. The closed-loop CH-MPC costs were found to be 1.10 to 1.66 times of MPC, while the MMPC costs were 1.25 to 2.06 times of MPC. Channel hopping strategy helped to mitigate some of the sub-optimality of MMPC, since the results from the table indicated that the CH-MPC costs were 0.79 to 0.88 times of MMPC.

Table 2. Means (with Standard Deviations in brackets) of MPC, CH-MPC and MMPC costs from 200 simulations

<table>
<thead>
<tr>
<th>α</th>
<th>MPC</th>
<th>CH-MPC</th>
<th>MMPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.4119 (0.2390)</td>
<td>0.4344 (0.2357)</td>
<td>0.5106 (0.2807)</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3824 (0.1790)</td>
<td>0.4281 (0.2130)</td>
<td>0.4997 (0.2326)</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3936 (0.1867)</td>
<td>0.3980 (0.2775)</td>
<td>0.6969 (0.3505)</td>
</tr>
<tr>
<td>1.2</td>
<td>0.3855 (0.1787)</td>
<td>0.4399 (0.3527)</td>
<td>0.7947 (0.4401)</td>
</tr>
<tr>
<td>1.6</td>
<td>0.2970 (0.1414)</td>
<td>0.4538 (0.2608)</td>
<td>0.5734 (0.3207)</td>
</tr>
</tbody>
</table>

Table 3. Channel hopping statistics under persistent random disturbance

<table>
<thead>
<tr>
<th>Case</th>
<th>α</th>
<th>channel 1</th>
<th>channel 2</th>
<th>channel 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>33.66%</td>
<td>33.36%</td>
<td>32.98%</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>36.33%</td>
<td>30.58%</td>
<td>33.88%</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
<td>36.91%</td>
<td>26.03%</td>
<td>37.06%</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
<td>36.96%</td>
<td>26.91%</td>
<td>36.13%</td>
</tr>
<tr>
<td>5</td>
<td>1.6</td>
<td>35.21%</td>
<td>27.53%</td>
<td>37.26%</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>36.36%</td>
<td>27.81%</td>
<td>35.83%</td>
</tr>
</tbody>
</table>

This makes sense because as α increases, due to plant interactions, channel 1 or channel 3 could become a more effective control to counter the random disturbances.

An extension of the current formulation to systems subject to persistent unknown disturbances, with known bounds, can be found in Siva (2010). Each channel optimises for a new input sequence, subject to the constraint that other channels execute disturbance feedback policies, as outlined in Siva et al. (2010). The updating channel is then identified to be that with the lowest cost.

5. SUBOPTIMAL MPC - 2

In this section, we further illustrate the CH-MPC idea by proposing another sub-optimal MPC scheme and use it as the basic building block of CH-MPC.

To be specific, the following suboptimal MPC problem is proposed:
The problem formulation of (4) retains the idea of optimising only with respect to a subset of the decision variables, parameterised by the index p; but this time choosing a different subset: $u_{j,k,i}, j = 1, \ldots, m; u_{p,k,i}, i = 1, \ldots, N - 1$. The intuition here is that, to reject unknown disturbances, it would be more effective, by allocating the limited degrees of freedom earlier in the horizon, e.g. to $u_{j,k,i}, j = 1, \ldots, m$, rather than later.

Now, Algorithm 1 in Section 2.3 can be used to obtain a version of channel-hopping MPC with problem (4) as the basic building block. In this section, we refer to this version as CH-MPC-2 and the version which employed the pre-determined sequence of $\{1, 2, 3, 1, 2, 3, \ldots\}$ as MMPC-2.

Table 4 shows the closed-loop costs of MPC, CH-MPC-2 and MMPC-2 using the same m-input example introduced in Section 4. We set $N = 18$ so that the number of decision variables for CH-MPC-2 and MMPC-2 is the same as those in CH-MPC and MMPC (with $N = 20$). As expected, MMPC-2 performed better than MMPC, and CH-MPC-2 recovered some of the sub-optimality of MMPC-2 due to its channel-hopping strategy. It is interesting to note that for case 4.2 (when $\alpha = 1.2$ and when the disturbance was introduced in channel 2), CH-MPC-2 performed slightly worse than MMPC-2. This is because although the channel-hopping algorithm selects the controller with the lowest open loop cost, it does not necessarily imply a lower closed-loop cost than is obtained with MMPC-2.

Again, 200 simulations, with disturbances added randomly and simultaneously on all three channels at the start of each simulation, were conducted. The mean and standard deviations of the closed-loop costs for different values of α were tabulated in Table 5. For an indication of the sub-optimality MMPC-2 and the degree which CH-MPC-2 scheme could expect to mitigate the suboptimality of MMPC-2. From the table, it was calculated that CH-MPC-2 costs were 1.09 to 1.16 times that of MPC, the MMPC-2 costs were 1.19 to 1.35 times of MPC, and the MMPC-2 costs were 0.86 to 0.93 times of MMPC-2. Thus, it has been demonstrated that the channel hopping strategy helped to mitigate some of the sub-optimality of MMPC-2.

6. CONCLUSION

In this paper, we proposed the Channel-Hopping MPC algorithm and illustrated its properties through numerical examples. The CH-MPC is inherently parallel and maps directly onto modern parallel computing architecture, such as multi-core processors, GPUs or custom FPGAs, which are becoming popular and affordable for embedded control applications.

In terms of computational complexity, for a given horizon N and a m-input plant, at every sampling instance, the CH-MPC has to solve m Quadratic Programs (QP), each QP having N decision variables. The fully optimised MPC, on the other hand, is required to solve one QP of $N \times m$ decision variables, while the MMPC would solve one QP of N decision variables. Thus, even on a sequential processor, CH-MPC may have the potential to reduce online computational complexity, by solving in smaller QP problems rather than solving one large QP; as the computational complexity of QP with z decision variables tends to vary as $O(z^2)$.

In digital control, faster sampling often leads to improved closed-loop performance, especially in rejecting unknown disturbances. It is often the case that “do something sooner” leads to better control than “do the optimal thing later”. Thus, the reduction in the computational complexity made available by the proposed CH-MPC and MMPC algorithms may be gainfully employed to increase the sampling rate of MPC to improve performance. A
detail investigation of implementing CH-MPC on parallel computing platforms to increase sampling rate is a subject of current research (Jerez et al., 2011).

REFERENCES

