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Abstract: In this paper, we consider the problem of recursively constructing smoothing spline
surfaces with equality and/or inequality constraints each time when a new set of data is observed.
The splines are constituted by using normalized uniform B-splines as the basis functions. Then
various types of constraints are formulated as linear function of the so-called control points, and
the problem is reduced to quadratic programming problem. Based on the results, we develop
the recursive design method for constructing such constrained smoothing spline surfaces. The
performance is examined by some numerical examples.
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1. INTRODUCTION

Constructing curves and surfaces for a given set of discrete
observational data is one of key problems in many fields
of engineering and sciences – such as computer aided
design, numerical analysis, image processing, robotics,
data analysis, etc. In such problems, interpolating and
approximating methods using spline functions have been
used frequently and studied extensively (e.g. Boor [2001]).

In addition to traditional approximating or interpolat-
ing splines, there are a large class of problems where
we need to impose various constraints on splines – such
as monotone smoothing splines (Egerstedt [2003]), in-
equality constraints at isolated points (Martin [2001]),
etc. By employing B-splines approach, the authors have
also developed a method for designing smoothing splines
with constraints over interval or at isolated points, and
the construction of the splines then becomes a quadratic
programming problem (Kano [2007]). Some of the results
using B-spline approach have been extended to the case of
surfaces (Fujioka [2009a,b]).

Most of the above design methods may face the problem
that the sizes of relevant matrices and vectors become
large as the number of given data increases. Furthermore,
their methods may be undesirable in such a case where
some sets of data are observed one after another and
we would like to construct spline curves and surfaces
each time when a new set is given. Such a case typically
arises in some robotics applications – such as SLAM
(Simultaneously Localization and Mapping), etc. Thus,
the so-called recursive design methods have been studied
for constructing splines (see e.g. Frezza [1995], Karasalo
[2007], Piccolo [2009]), but they are only for spline curves.
We have also developed similar design methods for both
the cases of curves and surfaces by employing B-spline

approach (Fujioka [2008, 2009c]). In particular, the design
method for the case of curves has recently been extended
to the case of constrained splines (Fujioka [2010]).

This paper is a continuation of our studies on the optimal
design of smoothing splines employing B-spline approach.
In particular, based on our studies (Fujioka [2009b,c]),
we here develop a recursive design algorithm of optimal
smoothing spline surfaces with equality and/or inequality
constraints. The splines are constructed by employing
normalized uniform B-splines as the basis functions. We
then show that the equality and/or inequality constraints
can be systematically added as linear functions of the
so-called control points and that the construction of the
spline surfaces becomes convex quadratic programming
problems. Based on such formulations, a recursive design
algorithm for constrained smoothing spline surfaces is
developed. The algorithm enables us to use in the broad
range of robotics applications. We here apply the results
to the 3-dimensional contour representation using a mobile
robot and the effectiveness and usefulness are examined by
numerical studies.

For designing surfaces x(s, t), we employ normalized, uni-
form B-spline function Bk(t) of degree k as the basis
functions,

x(s, t) =

m1−1
∑

i=−k

m2−1
∑

j=−k

τi,jBk(α(s − si))Bk(β(t − tj)) (1)

on a domain D = [s0, sm1
] × [t0, tm2

] ⊂ R2. Here, τi,j are
the weighting coefficients called control points, α, β(> 0)
are constants, m1, m2(> 2) are integers, and si’s, tj ’s are
equally spaced knot points with

si+1 − si =
1

α
, tj+1 − tj =

1

β
. (2)
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We summarize some of the symbols that will be used
throughout the paper: ∇2 denotes the Laplacian operator,
and ⊗ the Kronecker product. Moreover, ’vec’ denotes the
vec-function, i.e. for a matrix A = [a1 a2 · · · an] ∈ Rm×n

with ai ∈ Rm, vec A = [aT
1 aT

2 · · · aT
n ]T ∈ Rmn (see e.g.

(Lancaster [1985])).

2. OPTIMAL SPLINE SURFACES

As preliminaries, we briefly review B-splines and optimal
smoothing spline surfaces.

2.1 Normalized Uniform B-Splines

Normalized uniform B-spline Bk(t) of degree k is defined
by

Bk(t) =

{

Nk−j,k(t − j) j ≤ t < j + 1, j = 0, 1, · · · , k

0 t < 0 or t ≥ k + 1,
(3)

and the basis elements Nj,k(t) (j = 0, 1, · · · , k), 0 ≤ t ≤ 1
are obtained recursively by the following algorithm:

Algorithm 1. Let N0,0(t) ≡ 1 and, for i = 1, 2, · · · , k,
compute


































N0,i(t) =
1 − t

i
N0,i−1(t)

Nj,i(t) =
i − j + t

i
Nj−1,i−1(t) +

1 + j − t

i
Nj,i−1(t),

j = 1, · · · , i − 1

Ni,i(t) =
t

i
Ni−1,i−1(t).

(4)

Thus, Bk(t) is a piece-wise polynomial of degree k with
integer knot points and is k − 1 times continuously dif-
ferentiable. It is noted that Bk(t) for k = 0, 1, 2, · · · is

normalized in the sense of
∑k

j=0 Nj,k(t) = 1, 0 ≤ t ≤ 1.

Using Algorithm 1, the basis elements Nj,k(t) can readily
be computed for arbitrary degree k.

2.2 Optimal Smoothing Surfaces

The control points τi,j in (1) may be determined by the
theory of smoothing splines as follows.

Suppose that we are given a set of data

{(ui, vi; di) : ui ∈ [s0, sm1
], vi ∈ [t0, tm2

],

di ∈ R, i = 1, 2, · · · , N} (5)

and let τ ∈ RM1×M2 be the weight matrix defined by

τ =









τ−k,−k τ−k,−k+1 · · · τ−k,m2−1

τ−k+1,−k τ−k+1,−k+1 · · · τ−k+1,m2−1

...
... · · ·

...
τm1−1,−k τm1−1,−k+1 · · · τm1−1,m2−1









(6)

with M1 = m1 + k and M2 = m2 + k. Then a standard
problem is to find such a τ minimizing the cost function

J(τ) = λ

∫

I1

∫

I2

(

∇2x(s, t)
)2

dsdt +

N
∑

i=1

wi(x(ui, vi) − di)
2,

(7)

where I1 = [s0, sm1
], I2 = [t0, tm2

], λ(> 0) is a smoothing
parameter, and wi (0 ≤ wi ≤ 1) are the weights for
approximation errors.

Letting τ̂ ∈ RM1M2 be a vec-function of τ defined as

τ̂ = vec τ, (8)

the cost function J(τ) in (7) can be rewritten as a
quadratic function in terms of τ̂ (see e.g. Fujioka [2005]
for details),

J(τ̂) = τ̂T Gτ̂ − 2gT τ̂ + r, (9)

with

G = λQ + ΓWΓT , g = ΓWd, r = dT Wd. (10)

Here, Q ∈ RM1M2×M1M2 is a Gram matrix defined by

Q =

∫

I1

∫

I2

(

∇2(b2(t) ⊗ b1(s))
) (

∇2(b2(t) ⊗ b1(s))
)T

dsdt

(11)

with

b1(s) = [Bk(α(s − s−k)) Bk(α(s − s−k+1)) · · ·

· · · Bk(α(s − sm1−1)]
T , (12)

b2(t) = [Bk(β(t − t−k)) Bk(β(t − t−k+1)) · · ·

· · · Bk(β(t − tm2−1))]
T . (13)

The matrix Γ ∈ RM1M2×N in (9) is defined by

Γ = [b2(v1) ⊗ b1(u1) · · · b2(vN ) ⊗ b1(uN )] . (14)

Also, W ∈ RN×N and d ∈ RN are given by

W = diag{w1, w2, · · · , wN}

d = [d1, d2, · · · , dN ]T . (15)

It can be shown that the matrix G in (10) is positive-
semidefinite (see e.g. Fujioka [2005]). Thus, the cost J(τ̂)
in (9) is a convex function in τ̂ . Hence, if we design the
smoothing surfaces without imposing any constraints, the
optimal solution τ̂ minimizing the cost function in (7) is
given as a solution of Gτ̂ = g.

3. OPTIMAL SPLINE SURFACES WITH
CONSTRAINTS

There are various types of constraints such as pointwise
constraints on x(s, t) and/or its derivatives, and con-
straints over intervals or domains in D, either equality or
inequality. Using B-splines approach, it can be shown that
such constraints are formulated as linear functions of the
control points (see Fujioka [2009b] for details).

As an example, we here review only an inequality con-
straint over a domain,

x(s, t) ≥ f(s, t) ∀(s, t) ∈ [sκ, sκ+1] × [tµ, tµ+1] (16)

for a given continuous function f(s, t). Note here that
the inequality ‘≥’ may readily be replaced with ‘≤’ and
equality ‘=’ as we will see in below.
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3.1 Expression of Constraints

We first present the basic formula for expressing the
constraints. Noting that x(s, t) is constructed as a product
of two piecewise polynomials, we examine the polynomial
in each knot point region Dκ,µ = [sκ, sκ+1)× [tµ, tµ+1) for
κ = 0, 1, · · · ,m1 − 1 and µ = 0, 1, · · · ,m2 − 1. For Dκ,µ,
the function x(s, t) in (1) is written as

x(s, t) =
κ

∑

i=−k+κ

µ
∑

j=−k+µ

τi,jBk(α(s − si))Bk(β(t − tj)),

(17)

and, by (3), we get

x(s, t) =
k

∑

i=0

k
∑

j=0

τκ−k+i,µ−k+j

×Ni,k(α(s − sκ))Nj,k(β(t − tµ)). (18)

Then, by introducing new variables u and v defined by

u = α(s − sκ), v = β(t − tµ), (19)

the region Dκ,µ is normalized to the unit region E = [0, 1)×
[0, 1) for (u, v). Now, x(s, t) is expressed in terms of (u, v)
as x(s, t) = x̂(u, v) with

x̂(u, v) =

k
∑

i=0

k
∑

j=0

τκ−k+i,µ−k+jNi,k(u)Nj,k(v). (20)

Using the expression in (20) and the idea of “limiting spline
surface” (see e.g. Fujioka [2005]), the constraint in (16) can
be imposed as follows: For the given function f(s, t), we
first compute the limiting spline surfaces xc(s, t) with the
same form and the same degree k as in (1), i.e.

xc(s, t) =

m1−1
∑

i=−k

m2−1
∑

j=−k

τ c
i,jBk(α(s − si))Bk(β(t − tj)). (21)

From our past works (e.g. see Fujioka [2005]), we have em-
pirically confirmed that the surfaces xc(s, t) can approxi-
mate functions f(s, t) fairly precisely, i.e. xc(s, t) ≈ f(s, t).
We thus regard the constraint x(s, t) ≥ f(s, t) in (16) as
x(s, t) ≥ xc(s, t). Then, such a constraint may be realized
by imposing the condition τi,j ≥ τ c

i,j for i = κ − k, κ −
k + 1, · · · , κ and j = µ− k, µ− k + 1, · · · , µ, or in terms of
vectors τ̂ and τ̂ c(= vec τ c) as

Eκµτ̂ ≥ Eκµτ̂ c, (22)

where Eκµ ∈ R(k+1)2×M1M2 is defined by

Eκµ = [0k+1,µ Ik+1 0k+1,M2−µ−k−1]

⊗ [0k+1,κ Ik+1 0k+1,M1−κ−k−1] (23)

In fact, if (22) holds, we have from (18)-(20) and Ni,k(t) ≥
0 ∀t ∈ [0, 1],

x(s, t) = x̂(u, v) =

k
∑

i=0

k
∑

j=0

τκ−k+i,µ−k+jNi,k(u)Nj,k(v)

≥

k
∑

i=0

k
∑

j=0

τ c
κ−k+i,µ−k+jNi,k(u)Nj,k(v)

= x̂c(u, v) = xc(s, t) ∀(s, t) ∈ [sκ, sκ+1) × [tµ, tµ+1).

(24)

The above arguments can be readily extended to the case
of broader region [sκ, sζ) × [tµ, tη) for arbitrary ζ(> κ)
and η(> µ). It is noted that the condition in (22) is
only sufficient for x(s, t) ≥ xc(s, t) to hold. A simple but
useful case of the function f(s, t) in (16) is a constant, i.e.
f(s, t) = c, where c ∈ R is some constant. Then, it can be
shown that such constraint is expressed without employing
the idea of limiting spline surface as Eκµτ̂ ≥ c(k+1)2 , where

ci = [c c · · · c]T ∈ Ri.

3.2 Constrained Spline Surfaces

Using the expression of constraints as in Section 3.1, a
fairly large number of constrained spline surface problems
may be treated. The formulation is quite simple and is very
well fit for numerical solutions as quadratic programming
problems. Namely, the optimal smoothing spline surfaces
are obtained by minimizing the quadratic cost J(τ̂) in
(9), whereas a number of constraints on the splines may
be expressed as linear constraints on the vector τ̂ , either
equality or inequality or both. Then, a general form
of problems can be written as quadratic programming
problems as follows:

(QP1) Find τ̂ such that

min
τ̂∈RM1M2

J(τ̂) =
1

2
τ̂T Gτ̂ + gT τ̂ (25)

subject to the constraints of the form

Aτ̂ = q, f1 ≤ Eτ̂ ≤ f2, h1 ≤ τ̂ ≤ h2, (26)

for some matrices and vectors of appropriate dimensions.
A very efficient numerical algorithm is available for this
purpose (e.g. Nocedal [2006]).

4. RECURSIVE DESIGN ALGORITHM OF
CONSTRAINED SMOOTHING SPLINE SURFACES

Based on the foregoing development, we develop a re-
cursive algorithm of optimal smoothing spline surfaces
with constraints. Such an algorithm prevents the size of
relevant matrices and vectors from keep growing due to
the increasing number of given data.

Now suppose that, up to the p-th recursion, we are given
a set of Np data,

{(ui, vi; di) : ui ∈ [s0, sm1
], vi ∈ [t0, tm2

],

di ∈ R, i = 1, 2, · · · , Np} , (27)

where p = 1, 2, · · ·. Here, we assume that the number of
data given at the i-th recursion is ni(≥ 1), i = 0, 1, · · ·, and
hence Np =

∑p

i=0 ni. Then, letting x[p](s, t) be the optimal
smoothing spline surface at p-th recursion, we consider the
following recursive spline problem of constructing x[p](s, t)
by minimizing

J[p](τ) = λ

∫

I1

∫

I2

(

∇2x[p](s, t) −∇2x[p−1](s, t)
)2

dsdt
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+
1

Np

Np
∑

i=1

(x[p](ui, vi) − di)
2 (28)

subject to some constraints with the form in (26). Let
τ[p] ∈ RM1×M2 be the solution τ to this problem. Then, our
task is to develop an algorithm for recursively generating
the sequence of τ[p], i.e. τ[0], τ[1], · · ·. Then, a sequence
of the associated optimal smoothing surfaces, denoted as
x[0](s, t), x[1](s, t), · · ·, are generated by (1).

Such an algorithm is developed as follows: We first intro-
duce ∆x[p] and ∆τ̂[p] defined by

∆x[p] = x[p] − x[p−1] (29)

∆τ̂[p] = τ̂[p] − τ̂[p−1], (30)

where τ̂[p] denotes the vec-function of τ[p], i.e. τ̂[p] =
vec τ[p]. Then, the cost function J[p](τ[p]) in (28) is written

as J̃[p](∆τ̂[p]),

J̃[p](∆τ̂[p]) = ∆τ̂T
[p]Gp∆τ̂[p] + 2gT

p ∆τ̂[p] + const. (31)

Here, Gp ∈ RM1M2×M1M2 and gp ∈ RM1M2 are defined as

Gp = λQ +
1

Np

Γ̄pΓ̄
T
p (32)

gp =
1

Np

(Γ̄pΓ̄
T
p τ̂[p−1] − Γ̄pd̄p), (33)

where we set τ̂[0] as τ̂[0] = 0M1M2
. In (32) and (33),

Γ̄p ∈ RM1M2×Np and d̄p ∈ RNp are defined as

Γ̄p =
[

b2(v1) ⊗ b1(u1) · · · b2(vNp
) ⊗ b1(uNp

)]
]

= [Γ̄p−1 Γ̂p] (34)

d̄p = [d1 d2 · · · dNp
]T

= [d̄T
p−1 d̂T

p ]T , (35)

where Γ̂p ∈ RM1M2×np and d̂p ∈ Rnp denote

Γ̂p =
[

b2(vNp−1+1) ⊗ b1(uNp−1+1) · · · b2(vNp
) ⊗ b1(uNp

)]
]

(36)

d̂p = [dNp−1+1 dNp−1+2 · · · dNp
]T . (37)

By the expression of Γ̄p in (34) and d̄p in (35), Gp in (32)
and gp in (33) are rewritten as

Gp = Gp−1 +

(

1

Np

−
1

Np−1

)

Γ̄p−1Γ̄
T
p−1 +

1

Np

Γ̂pΓ̂
T
p

(38)

gp =
1

Np

(

Γ̄pΓ̄
T
p τ̂[p−1] − Γ̄p−1d̄p−1 − Γ̂pd̂p

)

. (39)

The expressions in (38) and (39) yield efficient recursive
method for computing Gp and gp.

On the other hand, by using (30), the constraints (26)
on the spline surfaces x[p](s, t) can be readily expressed as
linear constraints in terms of ∆τ̂[p]. Then, the general form
of this problem is identical to the quadratic programming
problem (QP1) in Section 3.2:

(QP2) Find ∆τ̂[p] such that

min
∆τ̂[p]∈RM1M2

J̃[p](∆τ̂[p]) =
1

2
∆τ̂T

[p]Gp∆τ̂[p] + gT
p ∆τ̂[p] (40)

subject to the constraints of the form

A∆τ̂[p] = q̄, f̄1 ≤ E∆τ̂[p] ≤ f̄2, h̄1 ≤ ∆τ̂[p] ≤ h̄2, (41)

where q̄, f̄l, h̄l for l = 1, 2 are computed by

q̄ = q − Aτ̂[p−1], f̄l = fl − Eτ̂[p−1], h̄l = hl − τ̂[p−1]. (42)

Thus, by solving this problem with respect to ∆τ̂[p], we
get the control point vector τ̂[p] for the p-th recursion by
(30) as

τ̂[p] = τ̂[p−1] + ∆τ̂[p]. (43)

The recursive design algorithm of constrained smoothing
spline surfaces can be summarized as follows.

Algorithm 2. The recursive algorithm, after initialization
steps (I-1)-(I-6), is carried out in the steps (R-1)-(R-8).

Initialization steps:

(I-1) Let p = 0, and set the parameters k, α, β, λ, s0, t0,
m1 (or M1(= m1 + k)) and m2 (or M2(= m2 + k)).

(I-2) Compute Q ∈ RM1M2×M1M2 in (11), Γ̄0 ∈ RM1M2×N0

in (34) and d̄0 ∈ RN0 in (35).
(I-3) Compute G0 ∈ RM×M and g0 ∈ RM by (32) and

(33).
(I-4) Set the constraints in (26) as required.
(I-5) Find τ̂[0] by solving (QP1).
(I-6) Construct x[0](s, t) by (1).

Recursive steps:

(R-1) Set p = p + 1, and compute Γ̂p ∈ RM1M2×np in (36)

and d̂p ∈ Rnp in (37).
(R-2) Compute Gp by (38).

(R-3) Set Γ̄pΓ̄
T
p = Γ̄p−1Γ̄

T
p−1 + Γ̂pΓ̂

T
p .

(R-4) Compute gp by (39).

(R-5) Set Γ̄pd̄p = Γ̄p−1d̄p−1 + Γ̂pd̂p.
(R-6) Compute q̄, f̄l, h̄l, l = 1, 2 by (42) and set the

constraints in (41) as required.
(R-7) Find ∆τ̂[p] by solving (QP2) and compute τ̂[p] by (43).
(R-8) Construct the spline curve x[p](s, t) by (1). Go to (R-

1).

Compared with the ordinary design method in Section 3,
the proposed method must solve the quadratic program-
ming problems at each recursion in Step (R-7). Thus,
the computational complexity of proposed method may
be modestly increased. However, we can prevent the size
of relevant matrices and vectors from keep growing as
the total number of data Np getting larger. It remains
to prove the convergence properties of the above method.
However, when we assume that the data di for constructing
smoothing curves are obtained by sampling some curve
f(s, t), we may expect that the optimal solution of this
problem converges to the one of minimizing

J[p](τ) = λ

∫

I1

∫

I2

(

∇2x[p](s, t) −∇2x[p−1](s, t)
)2

dsdt

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

2281



+

∫

I1

∫

I2

(x[p](s, t) − f(s, t))2dsdt (44)

subject to some constraints of the form in (41). Also, the
optimal solution τ ∈ RM1×M2 of the problem, denoted by
τ c
[p], can be computed recursively by the similar algorithm

as Algorithm 2. The associated splines xc
[p](s, t) are then

obtained.

5. NUMERICAL EXAMPLES

A typical application of optimal smoothing spline surfaces
with constraints appears in the problem of constructing
and reconstructing 3-dimensional contour in the robotics
fields. For example, when a set of data are measured
recursively by some range sensor and we need to construct
and reconstruct contour representation of an environment
by using some continuous periodic surface, the method
in the previous section can be used effectively. We here
examine performances of recursive design algorithm in the
previous section by the following numerical studies.

Let us consider a case where a mobile robot with some
range sensor is in a closed environment in 3-dimensional
space o−pqt as shown in Figure 1. Here, the mobile robot
is illustrated as green cylinder. The blue surface shows
the closed environment. We here assume that the closed
environment is given as a periodic surface,

p(s, t) = (rc + rm) cos θ(s) − rm cos

(

rc + rm

rm

θ(s)

)

q(s, t) = (rc + rm) sin θ(s) − rm sin

(

rc + rm

rm

θ(s)

)

∀(s, t) ∈ [0, 10] × [0, 10] (45)

with rc = 10, rm = 1/5 and θ(s) = 36π
180 s. Also, letting

f(s, t) be the distance between robot and environment,
f(s, t) is written as

f(s, t) =
√

p2(s, t) + q2(s, t),∀(s, t) ∈ [0, 10] × [0, 10]. (46)

Now suppose that the data di in (27) measured by a range
sensor is obtained by sampling f(s, t). Here the number
of data is set as ni = 30 at each recursion. (ui, vi)’s are
randomly spaced in the region D = [s0, sm1

] × [t0, tm2
] =

[0, 10] × [0, 10], and the magnitude of the additive noise
in di is set as σ = 0.01. However, note that such a
measured data may be unreliable unless they are within

Fig. 1. Constructing contour by a mobile robot with range
sensors.

the measurable range of range sensors. In Figure 1, such
a measurable range is plotted as a pink circle with radius
ra = 13.

For constructing the reliable contour in o − pqt space,
we consider constructing the smoothing spline surfaces
x[p](s, t) in the time domain D recursively such that

0 ≤ x(s, t) ≤ ra(= 13), ∀(s, t) ∈ [0, 10] × [0, 10]. (47)

We set k = 3, λ = 10−4, α = β = 1, s0 = t0 = 0 and
m1 = m2 = 10 (i.e. sm1

= tm2
= 10). Thus the knot

points si, tj are taken as integers as si = i, tj = j. The
periodicity constraints are set as

∂l

∂sl
x(s0, t) =

∂l

∂sl
x(stm1

, t), ∀t ∈ [t0, tm2
] (48)

for l = 0, 1, 2. Note that the inequality constraint in (47)
is imposed by employing the method in Section 3.1. In
addition, (48) is constraints over intervals and the method
in the paper (Fujioka [2009a]) can be used. By Algorithm 2,
optimal weight τ[p] for p = 0, 1, · · · are computed together
with the associated spline surfaces x[p](s, t).

Figure 2 shows the results x[p](s, t) for (a) p = 0, (b)
p = 5 and (c) p = 30 in colored surfaces together with
data points (green squares). Also, the corresponding 3-
dimensional contours plotted in o−pqt space are shown in
Figure 3, where we here employ the following coordinates

(p(s, t), q(s, t)) = (x(s, t) cos θ(s), x(s, t) sin θ(s)). (49)

From these figures, we may see that the developed method
works quite well and the surface x[p](s, t) satisfies all the
constraints in (47) and (48). Also, Figure 4 shows the
function error ||xc

[30](s, t)−x[p](s, t)||
2
L2

and error of weight

matrix ||τ c
[30] − τ[p]||2. Here xc

[30](s, t) is constructed from

f(s, t) by (44), where the corresponding control point
matrix is denoted as τ c

[30]. From these figures, we may

observe that x[p](s, t) converges to xc
[p](s, t) as the iteration

number p increases.

6. CONCLUDING REMARKS

We developed a systematic method for recursive design
of optimal smoothing spline surfaces with equality and/or
inequality constraints. The spline surfaces are constituted
employing normalized uniform B-splines as the basis func-
tions. Then the central issue was to determine an opti-
mal matrix of the so-called control points. Such an ap-
proach enables us to express various types of constraints
as linear function of control points. The design problem
becomes a quadratic programming problem in terms of
vec-function of control point matrix, and very efficient
recursive algorithm was developed. We examined the per-
formances of the design method by numerical examples for
3-dimensional contour constructing problem with equality
and inequality constraints. It is concluded that the method
is very effective as well as very useful for many applications
in various fields including robotics.
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