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Abstract: In crane automation systems, precise knowledge of the load position is a key factor
for fulfilling positioning accuracy requirements. This contribution presents a nonlinear observer
design for harbor cranes which makes use of gyroscope measurements. Both single-pendulum
load configurations and more complex double-pendulum configurations are considered. The
gyroscope sensors are attached to the rope near the top rope suspension point in both cases. The
observer is implemented as an Extended Kalman Filter. The results are compared to RTK-GPS
reference measurements.
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1. INTRODUCTION

These days, cranes are used in harbors all over the world
to handle a fast growing amount of bulk goods, contain-
ers and general cargo. Especially for harbor cranes, the
duration of the transloading process is a key factor as an-
chorage is expensive. For that reason shipping companies
are obligated to reduce the lay days as much as possible.
The throughput is above all limited by the ability of the
crane operator to position the load or the hook quickly
and accurately at the target position. Considering rope
lengths of up to 120 m, a load oscillation cycle can last
as long as 22 s. As a consequence, load positioning is time-
consuming once multiple approaches are needed. To tackle
this problem, numerous crane control algorithms have
been proposed. Some authors, such as Kim and Singhose
(2010), focus just on feedforward control, trying not to
excite load sway. The majority of crane control approaches
however use feedback. This enables crane control systems
to deal with disturbances such as load impact.

For using feedback control, the position of the load must
be known. Sorensen et al. (2007) and Danielson (2008) pro-
posed the use of a machine vision system for load position
estimation. Since most large cranes have camera systems
installed to aid the crane operator, it is a practical way
to use their video information. However, the outdoor use
of vision systems is problematic: during foggy conditions
the load might not be visible, and also the transloading
of certain bulk goods (such as coal) produces dust which
affects the reliability of optical measuring devices. The
problems with vision-based solutions were also acknowl-
edged by Kim et al. (2004). They used a load-mounted
inclination sensor instead to estimate the sway angle of the
load. Others use sensors near the rope suspension point to
directly measure the rope angle. This includes Uchiyama
(2009) who uses potentiometers and Terashima et al.
(2007) who installed encoders at the boom tip. Similarly,

Fig. 1. A Liebherr Harbour Mobile crane (LHM) with var-
ious load configurations (a hook, a container spreader
and a shell grab).

Knierim et al. (2010) and Masoud et al. (2005) attached
encoders to an overhead crane. While these approaches
work well in small and medium-scale applications, they
cannot easily be applied to large cranes since angular
resolution requirements rise with increasing rope lengths.
With rope lengths of up to 120 m and container twistlock
dimensions of about 3 cm, angular resolutions of about
1 · 10−5 rad are needed. For satisfying these accuracy de-
mands with classic encoders or potentiometers, measuring
transmissions are needed. Those devices, however, do not
withstand the vibrations when being attached to the crane
rope. For this reason, Liebherr Harbour Mobile cranes
(LHM) are equipped with gyroscopes to measure the load
sway. Neupert et al. (2010) published an observer design

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

3563



pA

ϕ

pL

l

Fig. 2. Simple crane model with different state definitions.

based on gyroscope measurements which this work is based
on. The main advancement of this contribution is that an
inertial coordinate system is used for modeling the load
swing. This eliminates the need of measuring the boom tip
acceleration and therefore improves the observer perfor-
mance during the acceleration phases. Also, the observer
presented in Neupert et al. (2010) could not be validated
due to the lack of reference measurements.

Apart from the well-known pendulum model, so-called
“double-pendulum” configurations are also taken into ac-
count in this contribution. They are formed when a light
load is attached to the crane hook with another rope,
resulting in two interacting pendulums attached to each
other. Kim and Singhose (2010) have shown that in this
case, crane operation becomes even more difficult. Even ex-
perienced crane operators try to drive double-pendulums
slowly to avoid double-pendulum excitation.

This paper is organized as follows: In Section 2 the
coordinate system is introduced. This choice is particularly
important for crane observer design since it eliminates the
need to measure the suspension point acceleration. The
single-pendulum model and the observer are designed in
Section 3. Afterwards, Section 4 deals with the double-
pendulum model. The performance of both observers is
validated using reference measurements.

2. CHOICE OF COORDINATE SYSTEM

Most publications on crane control use the position of the
load suspension point and its velocity as state variables,
and also the so-called “rope angle” and its derivative. In
Figure 2 these quantities are called pA, ṗA, ϕ and ϕ̇.
Assuming the model input u to be the acceleration of
the suspension point, l being the rope length and g the
gravitational acceleration, the linearized dynamic model
will be:

p̈A = u, (1a)

ϕ̈ = −g
l
ϕ− 1

l
u. (1b)

Eqn. (1b) is a differential equation describing the load
sway. It can be seen that the pendulum is excited by the
acceleration u of the suspension point.

In this work a different choice of the state vector is
advocated for crane modeling. Introducing the horizontal

load position pL = pA + lϕ and its derivative ṗL = ṗA + lϕ̇
as states, the dynamic model (1) can be restated as:

p̈A = u, (2a)

p̈L = −g
l

(pL − pA) . (2b)

The dynamics of (1) and (2) are identical. There is still
an important difference when it comes to observer design
between (1b) and (2b): Eqn. (2b) does not depend on the
acceleration u but on the suspension point position pA.

In industrial implementations, the suspension point posi-
tion pA is usually measureable with high accuracy 1 . How-
ever, the suspension point acceleration u is not that easy
to quantify. Differentiation methods get quite involved
when it comes to differentiating twice. Actuator models
which reconstruct the acceleration u from valve currents
and friction models also carry large uncertainties. Being
aware of this finding, the load position pL is used as a
state variable in this contribution.

3. SINGLE-PENDULUM OBSERVER

The goal of this section is to design a single-pendulum
observer. Contrary to the preliminary examination in Sec-
tion 2, the full nonlinear model of the main pendulum
dynamics is presented in Subsection 3.1. After the mea-
surement equation is determined (Subsection 3.2), an Ex-
tended Kalman Filter is composed (Subsection 3.3) and
finally experimental results are shown (Subsection 3.4).
For simplicity, all calculations are presented only for the
planar (two-dimensional) case.

pA1

pA2

pL1

pL2

l

FR

mg

Fig. 3. Pendulum model for single-pendulum observer.

3.1 Pendulum modeling

In crane control systems, it is generally assumed that the
rope is massless and that the load can be modeled as a
point mass. This leads to the “single-pendulum” model of
a crane.

The position of the boom tip p
A

= (pA1, pA2)
T

and its
time derivatives are assumed to be known. The same holds
for the rope length l. With these inputs, the dynamics of

the load position p
L

= (pL1, pL2)
T

can be set up using

the Newton-Euler-method (see Figure 3). As a generalized

1 Sorensen et al. (2007) for example use laser range sensor, while
Liebherr Harbour Mobile cranes are equipped with incremental
encoders.
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coordinate q the horizontal load position q = pL1 is used.
The overall load position p

L
can be expressed in terms of

this generalized coordinate:

p
L

=

(
q

pA2 −
√
l2 − (q − pA1)

2

)
. (3)

The load velocity ṗ
L

can be written as:

ṗ
L

=
∂p

L

∂q
q̇ +

∂p
L

∂t
= Jq̇ + v̄ (4)

with the abbreviations:

J =
∂p

L

∂q
=

 1
q − pA1√

l2 − (q − pA1)
2

 , (5)

v̄ =
∂p

L

∂t
=

 0

ṗA2 −
ll̇ + (q − pA1) ṗA1√
l2 − (q − pA1)

2

 . (6)

Similarly, the load acceleration can be expressed as:

p̈
L

= Jq̈ +
∂J

∂t
q̇ +

∂J

∂q
q̇2 +

∂v̄

∂t
+
∂v̄

∂q
q̇, (7)

where
∂J
∂t ,

∂J
∂q ,

∂v̄
∂t and

∂v̄
∂q can be calculated from Eqs. (5)

and (6). Newton’s second law for the load mass is:

m p̈
L

=

(
0

−mg

)
+ FR, (8)

with the load mass m, the gravitational acceleration g and
the rope force vector FR. With (7) plugged in and the rope
force FR being eliminated using D’Alembert’s principle,
the pendulum dynamics are:(

JTJ
)
q̈ = JT

[(
0
−g

)
− ∂J

∂t
q̇ − ∂J

∂q
q̇2 − ∂v̄

∂t
− ∂v̄

∂q
q̇

]
,

(9)
which can be considered as a differential equation:

q̈ = fq(q, q̇, u). (10)

The model inputs u are the position, velocity, and accelera-
tion of the boom tip as well as the rope length and its time
derivatives. All these quantities are needed to evaluate J
and v̄ and the derivatives of these terms in Eqn. (9) 2 :

u =
(
pA1, pA2, ṗA1, ṗA2, p̈A1, p̈A2, l, l̇, l̈

)
. (11)

A reasonable initial condition for this model is to assume
the load to be vertically below the boom tip, q(0) = pA1,
having no load swing, q̇(0) = ṗA1.

3.2 Expected measurement signal

The gyroscopes are attached to the rope near the tip of the
boom (see Figure 4). In general, gyroscopes measure the
rotation rate of the device in its own body-fixed coordinate
system. However, since only a planar problem setup is
2 The position and velocity of the boom tip can be measured using
incremental encoders. Unfortunately those signals were to noisy for
finding the accelerations p̈A1, p̈A2, and l̈. However, experiments have
shown that these accelerations do not influence the filtering results
much. Since the analysis in Section 2 revealed that the linearized
model does not depend on the accelerations at all, this observation
is not unexpected. Therefore p̈A1 ≈ p̈A2 ≈ 0 can be assumed.
For further details on how these quantities are measured on the LHM
crane, please refer to Neupert et al. (2010).

Gyroscope
attachments

Fig. 4. Gyroscope mounting on ropes. The picture was
taken with the boom fully lowered.

considered, the body-fixed rotation rate is the same as
the inertial rotation rate. Therefore the rotation rate ωrope

is simply the time-derivative of the rope angle ϕ (cf.
Figure 2). The rope angle can be expressed as:

ϕ = arcsin

(
q − pA1

l

)
. (12)

Assuming changes in the rope length to be negligible,
l̇ ≈ 0, the ideal measurement signal is therefore:

ωrope =
dϕ

dt
=

q̇ − ṗA1√
l2 − (q − pA1)

2
. (13)

Real gyroscope measurements include a number of distur-
bances. For a comprehensive summary, see Grewal and
Andrews (2010). In this case the major gyroscope error
is a simple (mainly temperature-dependent) signal offset.
This offset is a common problem of MEMS sensors, but
since changes in the sensor offset are much slower than
the pendulum dynamics, they cause no problems. A simple
offset disturbance model is:

ω̇offset = 0. (14)

An important measured disturbance are the higher-order
string oscillations. Especially for long ropes and low load
masses, crane ropes resonate just like guitar strings. These
oscillations are also easily dealt with. The first two har-
monic frequencies of a vibrating string are

f1 =
1

2l

√
FR

µ
and f2 =

1

l

√
FR

µ
, (15)

where l is the rope length, FR the rope force and µ the
mass per meter of the rope, see Dubbel (1994). Higher-
order harmonic frequencies could be calculated in the same
way, however, they are not yet dominant at the rope
lengths under consideration. Since these string oscillations
are quite sinusoidal, a simple disturbance model is:

ω̈harmonic,1 = −2πf1 ωharmonic,1, (16)

ω̈harmonic,2 = −2πf2 ωharmonic,2. (17)

Another well-known pendulum disturbance is wind. How-
ever, experience shows that even for large containers, the
wind forces are not challenging for crane control. Therefore
this model provides no wind disturbance compensation
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even though the LHM cranes are equipped with wind
sensors.

The presented crane model is observable as long as the
frequencies of the different oscillators do not match. In case
of the LHM cranes, the weight of the hook itself guarantees
that the harmonic frequencies are considerably higher than
the main pendulum oscillation frequency even for short
rope lengths.

3.3 Observer setup

An Extended Kalman Filter requires the observer problem
to be stated in the form:

x̂(tk) = f (x̂(tk−1), u(tk−1)) , x̂(t0) = x̂0, (18)

ŷ(tk) = h (x̂(tk), u(tk)) , (19)

where x̂ is the estimated state vector, u the model input
and ŷ the expected measurement. Here, the state vector
combines the pendulum dynamics (9) and the disturbance
model dynamics (14), (16), and (17):

x̂ = (q, q̇, ωoffset, ωharmonic,1, ω̇harmonic,1,

ωharmonic,2, ω̇harmonic,2) . (20)

Eq. (18) is in time-discrete form while (10), (14), (16), and
(17) were given in continuous-time form. Therefore, they
have to be discretized. The disturbance models (14), (16),
and (17) are linear with time-invariant parameters 3 , and
can therefore be discretized analytically. For discretizing
the nonlinear pendulum dynamics (10) however, an in-
tegration scheme is needed. This integration scheme has
to be stable when applied to undamped oscillators. A
modified one-step Rosenbrock formula is found to comply
with these requirements. It is implicit, therefore a series of
Newton iterations can be used to calculate the solution.
It turned out that a single Newton step is enough to
generate a stable pendulum motion prediction even with-
out observer feedback 4 . Therefore the pendulum state
prediction x̂12(tk) can be found by solving the system of
linear equations:I − 0.5h ·

∂f
q

∂x̂12

∣∣∣∣∣
tk−1

·[x̂12(tk) − x̂12(tk−1)] = h· f
q

∣∣∣
tk−1

,

(21)
where h = tk − tk−1 is the discretization time, f

q
are

the continuous-time pendulum dynamics, and x̂12(tk) =
[q(tk), q̇(tk)] denotes the first two elements of x̂(tk).

The output equation (19) does not require discretization.
It combines the ideal measurement signal (13) with the
disturbance signal models (14), (16), and (17):

ŷ = h (x̂, u) = ωrope + ωoffset + ωharmonic,1 + ωharmonic,2.
(22)

With the system model in the form (18), (19), the well-
known EKF prediction-correction filtering method can
be applied repeatedly. When the algorithm is called at
time tk, the old state estimate x̂(tk−1) is taken and its
propagation over the discretization time h is simulated. At
3 Changes in the harmonic frequencies f1 and f2 occur slowly and
can therefore be neglected.
4 Another advantage of doing only a single Newton step is that the
required jacobian is also needed for the EKF covariance prediction.
That means that the first Newton step can be done at almost no
additional computation costs.

the same time, the system matrix of the linearized model

A(tk−1) =
∂f

∂x̂

∣∣∣
tk−1

is used to predict the covariance of the

state estimation. The predicted state and the associated
covariance are called x̂−(tk) and P−(tk):

x̂−(tk) = f (x̂(tk−1), u(tk−1)) , (23)

P−(tk) = A(tk−1) · P (tk−1) ·A(tk−1)T

+
h

2

(
Q+A(tk−1) ·Q ·A(tk−1)T

)
. (24)

The predicted estimation covariance P−(tk) and the lin-

earization of the output equation H(tk) = ∂h
∂x̂

∣∣∣
tk

are used

to calculate the Kalman gain K(tk):

K(tk) ·
[
H(tk) · P−(tk) ·HT (tk) +R

]
= P−(tk) ·HT (tk)

(25)

Then the difference of the real measurement y to the
predicted measurement ŷ at time tk is used to correct both
the state and the covariance estimate:

x̂(tk) = x̂−(tk) +K(tk) · (y(tk) − ŷ(tk)) , (26)

P (tk) = P−(tk) −K(tk) ·H(tk) · P−(tk). (27)

The parameters used for this algorithm on the Liebherr
LHM crane are given in Table 1. Please note that only the
diagonal elements of the process noise matrix Q were set.
Therefore, only those are given in Table 1.

Table 1. Parameters and Ranges

Symbol Name Value

l Rope length 5 − 120 m
g Gravitational acceleration 9.81 m/s2

pA1, pA2 Boom Workspace 10 − 48 m
FR Rope force 9 − 1020 kN
µ Rope weight 9 kg/m

R Sensor noise 2 · 10−5 rad2/s2

Qq Process noise 0.2 m2/s2

Qq̇ 2 m2/s4

Qωoffset 2 · 10−5 rad2/s4

Qωharmonic 1 rad2/s4

Qω̇harmonic
1 · 10−4 rad2/s6

h Discretization time 0.025 s

3.4 Results

Figure 5 shows the position of the boom tip during a luffing
sequence as well as the observed load position. It can be
seen that the load is always accelerated towards the boom
tip. For the same luffing sequence, Figure 6 compares the
load velocity estimation from the presented observer with
GPS reference measurements. Those reference measure-
ments were recorded with a Novatel RT-2 receiver with
Real-Time-Kinematic capabilities (RTK-GPS) 5 6 . It can

5 The antenna was placed on the load and therefore measured
the horizontal load position pL1 (and not the plotted velocity
ṗL1). However, there was a systematic bias in the GPS position
measurements compared to the observer. The reason for this offset
was a small, unmodeled crane tower deflection which depends on
the crane load. Therefore the GPS position measurements were
differentiated and the resulting GPS load velocity was used as a
reference for the observer’s load velocity estimation.
6 It must be noted that the RTK-GPS system is adequate for
experimental reference measurement only. In real crane applications
the hook can easily be surrounded by containers or might be lowered
into the ship’s hull where the GPS antenna has no reception.
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Fig. 5. Crane movement and load swing during a luffing
sequence. The rope length was l = 48 m.
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Fig. 6. Comparison of observed load velocity and GPS
reference measurement.

be seen that the observed state estimation is in good
accordance with the GPS reference measurements.

4. DOUBLE-PENDULUM OBSERVER

When handling general cargo, double-pendulum configura-
tions as seen in Figure 7 are common. Masoud et al. (2005)
acknowledge that double-pendulum effects can even occur
in container handling. In this section the crane model is
therefore extended to a double-pendulum configuration.

4.1 Double-pendulum modeling

The modeling of the double-pendulum is essentially analo-
gous to Section 3.1. The length of the rope between boom
tip and hook is l1 and the rope length between hook and
load is l2. Unlike l1, the distance between hook and load
cannot change. Therefore l2 is considered constant. As
shown in Figure 8, the hook and load are modeled as
point masses with the positions p

H
= (pH1, pH2)T and

p
L

= (pL1, pL2)T . In order to shorten the calculations,
both positions can be written in a single vector:

p = (pH1, pH2, pL1, pL2)
T
. (28)

Boom tip
(pA1, pA2)

Hook
(pH1, pH2)

Load
(pL1, pL2)

Fig. 7. LHM crane with double-pendulum load configura-
tion loading general cargo.

Using the horizontal coordinates of the hook and of the
load as generalized coordinates, q1 = pH1 and q2 =
pL1, the position vector can be expressed as follows (see
Figure 8):

p =

 q1

pA2 − s1

q2

pA2 − s1 − s2

 , (29)

where s1 and s2 are:

s1 =

√
l1

2 − (q1 − pA1)
2
, s2 =

√
l2

2 − (q2 − q1)
2
. (30)

Even though the dimension of the problem has changed,
the expressions for the velocity and acceleration are nearly
the same as for the single-pendulum in (4) and (7):

ṗ =
∂p

∂q
q̇ +

∂p

∂t
= Jq̇ + v̄, (31)

p̈ = Jq̈ +

(
∂J

∂t
+
∂J

∂q1
q̇1 +

∂J

∂q2
q̇2

)
q̇ +

∂v̄

∂t
+
∂v̄

∂q
q̇. (32)

Applying Newton’s second law to the point masses gives:

M p̈ =

 0
−mH g

0
−mL g

+

(
FR1 − FR2

FR2

)
, (33)

where FR1 and FR2 are the rope force vectors and M is
the mass matrix: M = diag (MH , MH , ML, ML). With
(32) plugged into (33) and D’Alembert’s principle being
applied, the following double-pendulum dynamics can be
obtained:

(
JTMJ

)
q̈ = JTM


 0
−g
0
−g

−
(
∂J

∂t
+
∂J

∂q1
q̇1 +

∂J

∂q2
q̇2

)
q̇

− ∂v̄

∂t
− ∂v̄

∂q
q̇

 . (34)

The structure of the differential equation q̈ = fq(q, q̇, u)

as well as the inputs u have not changed compared to
the single-pendulum case. Also, the measurement equation
has not changed compared to (13), except for the variable
names:
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Fig. 8. Pendulum model for double-pendulum observer.
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Fig. 9. Comparison of observed hook velocity and GPS
reference measurement with a hook mass of mH =
2.2 t and a load mass of mL = 2.5 t. The rope lengths
were l1 = 35 m and l2 = 5 m.

ωrope =
q̇1 − ṗA1√

l1
2 − (q1 − pA1)

2
. (35)

Therefore the Extended Kalman Filter is implemented in
the same way as in the single-pendulum case.

It has to be noted that it is possible to lose observability
if one of the natural harmonic oscillation frequencies
(15) matches the second eigenfrequency of the double
pendulum. In case of the LHM cranes, this can only
happen at long rope lengths (l1 > 80 m) and light loads
(m2 < 2000 kg). An additional sensor system in the hook
could be used to distinguish between harmonic oscillations
and double-pendulum dynamics.

4.2 Results

To validate the results of the double-pendulum observer,
an RTK-GPS system was installed on the crane; the an-
tenna was put on the hook. Fig. 9 shows both the observed
load velocity and the velocity measured via GPS. Until
about 380 s in the measurement, both eigenfrequencies of
the double-pendulum can be seen. Afterwards the primary
oscillation is attenuated by the crane operator, leaving
only the second eigenmode oscillating. It can be seen that

the observed load velocity matches the reference measure-
ment very well.

5. CONCLUSION

A load position observer was presented for both a single-
pendulum and a double-pendulum crane configuration.
The observers are implemented as Extended Kalman Fil-
ters. The required input signals are the boom tip position
which can be measured using incremental encoders and the
angular rope velocity, measured by gyroscopes. Natural
harmonic oscillations of a crane rope as well as a gyro-
scope sensor offset were taken into account. The presented
observers were tested on Liebherr Harbour Mobile cranes.
In an experimental setup, an RTK-GPS system was used
to measure the hook position for reference. The RTK-
GPS measurements have shown that the observer works as
expected both in the single pendulum and in the double
pendulum case.
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