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Abstract: This paper develops the recently published Laguerre MPC by proposing an
alternative parametrization of the degrees of freedom in order to further increase the feasible
region of model predictive control (MPC). Specifically, a simple but efficient algorithm that
uses Kautz functions to parameterize the degrees of freedom in Optimal MPC is presented. It
is shown that this modification gives mechanisms to achieve low computation burden with good
feasibility and good performance. The improvements, with respect to an existing algorithm that
uses a similar strategy, are demonstrated by examples.
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1. INTRODUCTION

Linear model predictive control (MPC) (Mayne et al.,
2000; Rossiter, 2003; Camacho and Bordons, 2003) is
well established and widely used both in industry and
academia, but there are still some theoretical and practical
issues which have non-satisfactory answers. For instance,
one well understood conflict is between feasibility and
performance. If a dual-mode MPC controller, that is one
based on infinite output horizons, is tuned to give high
performance, it will often have relatively small feasible
regions (Scokaert and Rawlings, 1998; Kouvaritakis et al.,
1998) unless one uses a prohibitively large number of
decision variables (or degrees of freedom, d.o.f.). There is a
pragmatic limit to increase the d.o.f. for the global feasible
region as this compromises the computational burden.
A strategy with the same number of d.o.f. giving good
feasibility might be achieved through detuning of terminal
mode but hence have relatively poor performance (Rossiter
et al., 2010).

It has been noted that a DMC (Culter and Ramaker,
1980) or GPC (Clarke et al., 1987) type of algorithm will
give reasonable performance for large (Large is typically
3-5 with sensible sampling rates) input horizons, so long
as the output horizon is longer than the settling time.
Significantly, DMC/GPC deploy a detuned terminal mode
– essentially open-loop behavior. However, there are pro-
cesses where this may not be so effective; for instance
systems with: (i) poor open-loop dynamics and (ii) state
or output constraints. In these cases, DMC or GPC with
an input horizon of one may produce closed-loop behavior
close to the open-loop and therefore unsatisfactory. State
constraints may also severely restrict the operating region
and have a strong influence on the constrained control law.

A further significant theoretical weakness of GPC/DMC is
the lack of a general stability guarantee, especially during
constraint handling. Although one could argue that with
large output horizons such issues are nit picking, it can

also be argued that if such guarantees are straightforward
to achieve, then it seems reasonable to do so. Hence, in this
paper the standard dual-mode prediction set up (Rossiter
et al., 1998; Mayne et al., 2000) will be adopted as this
enables guarantees of asymptotic stability and recursive
constraint satisfaction.

Summarizing, typical trade-offs within linear MPC are:
increase the feasible region, keep the computational load
within sensible limits and obtain good closed-loop perfor-
mance.

Several authors have worked on these trade-offs but the
main research focus in recent years has moved towards
nonlinear systems, robustness and parametric solutions.
In stable systems with no state/output constraints, the
simplest approach is to avoid constraint violations by using
saturation (Rojas and Goodwin, 2002). Another simple
approach (Tan and Gilbert, 1992) is defining multiple
linear control laws and selecting online the current fea-
sible law with the best performance. The weakness of this
approach is that the optimal constrained control law is
time-varying (Bemporad et al., 2002) and thus this can
give suboptimal performance and restrictions to feasibility.
Moreover, storing a multiple of control laws and in partic-
ular their corresponding feasible regions has a potentially
large overhead, especially in the uncertain case (Pluymers
et al., 2005).

Alternatively, interpolation techniques (Bacic et al., 2003;
Rossiter et al., 2004) have utilized different formulations
of the d.o.f. for optimization to enlarge the feasible region
without too much detriment to performance. Moreover,
another suggestion that has had little consideration in the
literature is the concept of triple mode control. In this
strategy one recognises that large feasible regions in con-
junction with good performance often imply nonlinear or
linear time varying (LTV) prediction dynamics (Rossiter
et al., 2005; Imsland et al., 2008). The challenge is to find
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a suitable fixed 1 LTV control law which enlarges the fea-
sible region without too much detriment to performance.
This strategy provides good performance and feasibility at
the expense of an increased offline computational burden
and thus may be difficult for industrial implementation.
More recently, Laguerre functions have been proposed as a
means of parameterizing the input predictions in (Rossiter
and Wang, 2008; Rossiter et al., 2010) as a simple way of
improving the performance and feasibility. The main idea
is to form the predictions as a combination of Laguerre
polynomials. The use of Laguerre functions in predictive
control have proven to be a very effective for improve
feasibility and reducing the online computational burden.

This paper assumes that the terminal mode is well tuned
and thus the only way to improve the feasibility is with
the d.o.f. within or parameterisation of the predictions.
Specifically the intent is to answer the question about
Laguerre MPC, that is, why did you choose Laguerre
polynomials and are these the only choice? Hence, in
line with the proposals of (Rossiter et al., 2010), here
Kautz functions are tested as these are more general
than Laguerre functions. This paper will demonstrate that
Kautz functions are an effective alternative to the standard
basis set for parameterizing the d.o.f. within MPC and
indeed may be more effective that Laguerre functions
as they offer more variety in the key characteristics.
The issue of making a systematic choice of ’function’ or
parameterisation of d.o.f. to best meet a specific objective
is left as future work.

Section 2 will give the necessary background about mod-
elling, predictive control and Laguerre optimal predictive
control (LOMPC). Section 3 presents the basic properties
of Kautz functions and compares them with Laguerre
functions. Section 4 develops the novel Kautz OMPC
(KOMPC) algorithm using Kautz functions to parame-
terize the input predictions. Section 5 gives numerical
examples showing the efficacy of the proposed algorithm
and this is followed by the conclusions in Section 6.

2. BACKGROUND

This section will introduce the background information
and assumptions used in this paper.

2.1 Modelling and Optimal MPC

Assume discrete-time state-space model of the form:

xk+1 = Axk +Buk

yk = Cxk (1)

with xk ∈ R
nx ,yk ∈ R

ny and uk ∈ R
nu which are the

state vectors, the measured output and the plant input
respectively. Let the system be subject to constraints of
the form

∆u ≤ ∆uk ≤ ∆u

u ≤ uk ≤ u (2)

x ≤ xk ≤ x

The performance index (Scokaert and Rawlings, 1998) to
be minimized with respect to uk, uk+1... is

1 The time varying part refers solely to the prediction dynamics.

J =

∞∑

i=0

(xk+i+1)
TQ(xk+i+1) + (uk+i)

TR(uk+i)

s.t.

{
(1), (2) ∀k ≥ 0,
uk = −κxk ∀k ≥ nc

(3)

with Q and R positive definite state and input cost
weighting matrices. Where κ is the optimal feedback gain
minimizing J in the absence of constraints (2). Practical
limitations imply that only a finite number, that is nc, of
free control moves can be used (Rossiter, 2003).

The prediction beyond nc samples assumes only the opti-
mal feedback, uk = −κxk is implemented (Imsland et al.,
2008) and this is feasible only if the predicted state xnc

is
contained in a polytopic control invariant set (that is the
MAS) for example:

XMAS = {x0 ∈ R
nx | x ≤ xk ≤ x,

u ≤ −κxk ≤ u, xk+1 = Axk +Buk, ∀k ≥ 0} (4)

For simplicity of notation, the MAS can be described in
the form XMAS = {x | Mx ≤ d} for suitable M and d. For
convenience, the degrees of freedom with the future inputs
are often reformulated in terms of a new variable ck

uk+i = −κxk+i + ck+i; i = 0, . . . , nc − 1

uk+nc+i = −κxk+nc+i; i ≥ 0 (5)

and hence the equivalent optimization to (3) is:

CTSC s.t. Mxk +NC ≤ v; C = [cTk , . . . , c
T
k+nc−1]

T (6)

The MCAS (maximal controlled admissible set) is defined
as XMCAS = {xk ∈ R

nx |∃ C ∈ R
ncnu ,Mxk +NC ≤ d}.

Details of how to compute positive definite matrix S,
matrices N , M and vector v are omitted as by now well
known in the literature (Gilbert and Tan, 1991; Mayne
et al., 2000; Rossiter, 2003). The optimal MPC (OMPC)
algorithm is given by solving the QP optimization (6)
at every sampling instant then implementing the first
component of C, that is ck in the control law of (5). When
the unconstrained control law is not predicted to violate
constraints (i.e. xk ∈ XMAS), the optimizing C is zero so
the control law is uk = −κxk. The optimization of (6) can
require a large nc d.o.f. to obtain both good performance
and a large feasible region.

2.2 LOMPC: Laguerre polynomials and MPC

Laguerre OMPC (LOMPC) is a dual-mode MPC algo-
rithm (Rossiter and Wang, 2008; Rossiter et al., 2010)
where the d.o.f. within the input predictions are parame-
terized in terms of Laguerre polynomials rather than using
the more normal standard basis set. Laguerre polynomials
are defined as follows:

Li(z) =
√

(1− p2)
(z−1 − p)i−1

(1− pz−1)i
; 0 ≤ p < 1 (7)

The input perturbations are reformulated as ck+i =
L(i)T η and hence the prediction cost becomes:

J = ηT [

∞∑

i=0

Ai
LL(0)WL(0)T (Ai

L)
T ]η (8)

where L(i) = ALL(i − 1) (Details of how to define AL

are available in the references). Constraints representing
the corresponding MCAS can also be summarised as:
XMCAS = {xk ∈ R

nx |∃ η ∈ R
ncnu ,Mxk +NHLη ≤ d}.
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Algorithm 2.1: The LOMPC algorithm is summarized
as:

η∗ = arg minη JLOMPC s.t. Mxk +NHLη ≤ d (9)

Define C = L(0)T η∗ and implement the control law

uk = −κxk + ck

where ck is the first element of the optimizing C.

3. KAUTZ FUNCTIONS

Laguerre functions (Rossiter et al., 2010; Wang, 2009) have
been popular in filtering, system identification and control
design because few parameters are enough to describe
the behavior of the system. Its properties depend upon
the selection of a scaling factor p and its complexity and
accuracy of the description increases as the number of
Laguerre networks increases. The application of Laguerre
networks (Wang, 2009) is limited to a single pole selection
(i.e. between 0-1). This limitation may be overcome by
introducing Kautz networks which allow the selection of
two complex poles which consequently may approximate
system behavior better than using a single real pole as in
Laguerre networks.

3.1 Kautz Network

Kautz networks were first proposed by Kautz (Kautz,
1954). The discrete-time Kautz network was generated
from discretization of continuous-time Kautz network (a
more detailed discussion on continuous time Kautz func-
tions can be found in (Wang, 2009)).

The Kautz network is defined as follows

Ki(z) =
√

(1− a2)(1 − b2)
(z−1 − a)i−1(z−1 − b)i−1

(1 − az−1)i(1− bz−1)i
;

(10)

0 ≤ a < 1; 0 ≤ b < 1

where a and b are poles of the discrete-time Kautz network.
The free parameters, a and b are selected by the user;
these are also called the scaling factors. These functions
are orthonormal and hence span the input prediction space
effectively. However, the inverse z-transform of the Kautz
networks do not lead to a compact expression of the Kautz
functions in the time-domain so state-space representation
is preferred and derived briefly here:

Ki(z) = Ki−1(z)
(z−1 − a)(z−1 − b)

(1− az−1)(1− bz−1)
; (11)

0 ≤ a < 1; 0 ≤ b < 1

With K1(z) =

√
(1−a2)(1−b2)

(1−az−1)(1−bz−1) . The discrete-time Kautz

functions are expressed in a vector form as

K(n) = [k1(n), k2(n), . . . , kN (n)]T (12)

Taking advantage of the network realization in equa-
tion (11), the set of discrete-time Kautz functions satisfies
the following difference equation

K(i+ 1) = GK(i) + FK(i− 1) (13)

where matrix G and F is (N × N) and is a function of

parameters α = ab, β = (a+b) and γ =
√

(1− a2)(1− b2),
and, for example, in case of N = 3

G =

[
β 0 0

β(α− 1) β 0
αβ(α − 1) β(α − 1) β

]

; Ki−1(0) = γ





1
α

α2





F =





−α 0 0
(1 − α2) −α 0
α(1− α2) (1− α2) −α



 ; Ki−2(0) = γβ

[
1

α− 1
α(α − 1)

]

(14)

In State-space form

Ψ(i+ 1) = ΣΨ(i) + Γδ(i)

K(i) = ΦΨ(i) (15)

where Ψ(i) = [Ki Ki−1]
T , Σ = [G F ; I 0], Γ = [0 0]T

and Φ = [I 0]. Conventional algorithms use d.o.f. (or
perturbations ck) signals that have an impact over just
one sample and thus have a limited impact on feasibility.
Essentially adding nc or d.o.f. expands the feasible region
to one where the state is able to enter the MAS with C = 0
in at most nc steps; such an expansion may therefore be
small in conventional algorithms. As it is normal to choose
nc to be small, say 1 or 2, then the volume of the feasible
region is dominated by the choice of feedback κ in terminal
mode.
Laguerre polynomials with p > 0 evolve over an infinite
horizon and the speed of convergence is linked directly to
the time constant p. If the best closed-loop input trajectory
is expected to evolve with a given time constant, then it
is intuitively obvious that an appropriate mix of Laguerre
polynomials with this time constant is more likely to get
close to the ideal trajectory than a mix of simple input
values over a short infinite horizon. In a similar vein,
where a state is a long way from the unconstrained feasible
region, a small number of simple input perturbations is
not sufficient to regain feasibility and hence conventional
algorithms may have poor feasibility. Laguerre functions
(Rossiter and Wang, 2008; Rossiter et al., 2010) provide
an alternative trajectory for improving the feasibility with
the same number of d.o.f..

A Kautz function with a = p, b = p where p is real, gives:

K(i) = L(i).

which demonstrates that Laguerre functions are a special
case of Kautz functions. clearly therefore, Kautz functions
have more flexibility than Laguerre functions and it is this
flexibility that is explored in this paper.

For completeness and to improve insight, Fig. 1, shows the
coefficients of the first four Kautz (with poles at 0.8±0.4j
and Laguerre polynomials (p = 0.8). In both cases the
speed of convergence is linked with the poles. In Fig. 1 the
convergence of Kautz polynomials are slower than that of
Laguerre polynomials due to the poles being closer to the
unit circle, but the oscillatory behaviour still allows the
capture of some faster dynamics; hence we expect Kautz
functions to offer more functionality than Laguerre polyno-
mials by both facilitating slower convergence (to improve
feasibility) in conjunction with more rapid transitions if
required in near transients to improve performance.

4. USING KAUTZ POLYNOMIALS IN OMPC

A fundamental weakness of the OMPC algorithm is infea-
sibility when nc steps are insufficient to move the initial
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Fig. 1. Coefficient of four Kautz and Laguerre polynomials

state into the MAS. This weakness can be overcome by
increasing the d.o.f. to allow more steps for reaching the
MAS, but obviously at the expense of an increased com-
putational burden. Another way of increasing the feasible
region is by detuning the terminal mode which may com-
promise performance. However, an alternative hightlighted
in Rossiter et al. (2010) is to parameterise the d.o.f. differ-
ently so that the impact on the input predictions is over
a longer horizon, thus relaxing the time requirement for
entering the MAS. This section derives an algorithm which
uses Kautz functions for this parameterisation, whereas
the next section will compare these with the earlier La-
guerre based approach.

4.1 Kautz functions in OMPC

There are two complex poles a and b that define the time
scale for the input predictions using a combination of
Kautz functions and one could even consider modifying a
and b online to improve feasibility where required and thus
deploying no extra d.o.f.. The algorithm associated using
Kautz functions is denoted as KOMPC for Kautz OMPC.
Kautz functions can easily be used to redesign DMC/GPC
achieving good performance and feasibility, but here focus
is on dual-mode algorithms with guaranteed stability.

4.2 Kautz OMPC or KOMPC

Kautz functions are used to parameterize the perturba-
tions ck around the unconstrained optimal. The prediction
using decision variables used in OMPC and KOMPC are
put side by side (ρ denotes the KOMPC d.o.f.):

C =












ck
...

ck+nc−1

0
0
...












︸ ︷︷ ︸

OMPC

or C =












K(0)T

K(1)T

...

...

...












ρ = HKρ
︸ ︷︷ ︸

KOMPC

(16)

The key difference here from OMPC is that the HK matrix
has large number ( in fact infinite) of rows. The perfor-
mance index J can be computed in terms of perturbation
ck as:

J =
∞∑

i=0

cTk+iWck+i (17)

However, from eqn.(16) note that ck+i = K(i)Tρ and from
eqn.(13) the new performance index becomes:

JKOMPC =

∞∑

i=0

ρTK(i)WK(i)Tρ

= ρT [
∞∑

i=0

K1(0)
T (Gi)TWGiK1(0)] ρ +

ρT [

∞∑

i=0

K0(0)
T (F i)TWF iK0(0)] ρ (18)

The Feasible region can also be rewritten in the form:
XMCAS = {xk ∈ R

nx |∃ρ ∈ R
ncnu ,Mxk +NHK ρ ≤ d}.

Algorithm 4.1: The KOMPC algorithm is summarized
as:

ρ∗ = arg minρ JKOMPC s.t. Mxk +NHK ρ ≤ d (19)

Define C = K(0)Tρ∗ and implement the control law

uk = −κxk + ck

where ck is the first element of the optimizing C.

5. NUMERICAL EXAMPLES

This section will illustrate the efficacy of the proposed
KOMPC algorithm in comparison with LOMPC and
OMPC using numerical examples. The main focus of this
paper is a comparison based on performance and feasibil-
ity. The results will be presented in a way that is suit-
able for any number of state dimensions. The closed loop
performance is measured by computing the performance
index J over the time span where system converges. The
optimal performance index Jopt is computed using OMPC
with high nc (nc = 20 is used for numerical examples).
The plots show the normalized performance index for
comparison. The feasible regions in general are difficult to
compare visually when larger than 2D plots. The volume
or extent of the feasible region is computed by selecting
different state directions and computing, relatively, how
far out in these directions a feasible solution exists. The
maximum distance point for various direction is denoted
by σ, the various algorithms are then tested for initial
points λσ (0 ≤ λ ≤ 1). Clearly the larger the λ for which
they are feasible, the larger the feasible region in that
specific direction. Infeasibility is denoted by a zero in the
normalized performance index plots.

5.1 Example 1

The discrete-time state-space model and constraints are

A =

[
0.6 −0.4
1 1.4

]

; B =

[
0.2
0.05

]

; C = [1 −2.2] ; (20)

∆u = 0.4 = −∆u; u = 0.8; u = −1.5; y = 5 = −y

The tuning parameters are Q = I2×2,R = 2, nc = 2,
p = 0.8, a = 0.8 + 0.45j and b = 0.8− 0.45j.
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Fig. 3. Normalised performance index
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for various state directions.

Figure 2 shows the feasible regions from which it is clear
that KOMPC has a larger MCAS than both LOMPC and
OMPC for the same number of d.o.f. i.e. nc = 2. The plots
of normalized cost against λ for a number of different state
directions are plotted in Fig. 3 for OMPC, LOMPC and
KOMPC. The global optimal is computed with OMPC
with nc = 20.

• OMPC gives good performance for states well within
the MCAS, but feasibility is severely restricted as the
plots drops to zeros for small λ.

• LOMPC has better feasibility than OMPC but loses
some performanc compared to the global optimal near
its own MCAS boundary.

• KOMPC gives both better feasibility and perfor-
mance that both OMPC and LOMPC.

5.2 Example 2

For this example the discrete-time state-space model and
constraints are given by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

 J
O

M
P

C
/J

O
P

T

 λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

 J
L

O
M

P
C

/J
O

P
T

 λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

 J
K

O
M

P
C

/J
O

P
T

 λ

Fig. 4. Normalised performance index
JOMPC/JOPT,JLOMC/JOPT,JKOMPC/JOPT
for various state directions.

A =

[
1.4000 −0.1050 −0.1080

2 0 0
0 1 0

]

; B =

[
0.2
0
0

]

;

C = [5 7.5 0.5] ; (21)

∆u = 0.02 = −∆u; u = 0.4 = −u; y = 1.2 = −y

The tuning parameters are Q = CTC,R = 2, nc = 2,
p = 0.8, a = 0.8 + 0.26j , b = 0.8 − 0.26j and ten state
directions are chosen for the initial states.

Fig. 4 shows the feasibility/performance results for OMPC,
LOMPC and KOMPC algorithms.

• OMPC has good performance while feasible, but very
limited feasibility.

• LOMPC has noticeably better feasibility than OMPC,
but with a small loss of performance in mid ranges of
λ.

• KOMPC has better feasibility than both OMPC and
LOMPC and less performance loss than LOMPC.

5.3 Example 3

For this example the discrete-time state-space model and
constrained are

A =






0.9146 0 0.0405 0.1
0.1665 0.1353 0.0058 −0.2

0 0 0.1353 0.5
−0.2 0 0 0.8




 ; B =






0.0544 −0.0757
0.0053 0.1477
0.8647 0
0.5 0.2




 ;

C =

[
1.7993 13.2160 0 0.1
0.8233 0 0 −0.3

]

. (22)

∆u =

[
0.5
0.5

]

= −∆u; u =

[
1
2

]

= −u; y =

[
10
10

]

= −y

The tuning parameters are Q = I4×4,R = I2×2, nc = 2,
p = 0.8, a = 0.8 + 0.45j ,b = 0.8 − 0.45j and fifteen
state directions are chosen for the initial states. Fig. 5
shows the comparison results of performance/feasibility for
OMPC, LOMPC and KOMPC algorithms for chosen state
directions. In this case there is a little to choose between
the algorithms which demonstrates that a generic result is
not possible - using Kautz is a tool which sometimes has
major benefits and other times may not be required.
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Table 1. Volume comparison

OMPC LOMPC KOMPC

Example 1 1.3841 2.2723 2.779

Example 2 0.0035 0.0163 0.0179

Example 3 71.6438 73.1401 73.3729

For completeness, Table 1 shows the volumes of the MCAS
for the three examples presented in this section. This data
is an objective measure of feasibility and the observation
that KOMPC may improve the feasibility by utilizing the
d.o.f. more effectively.

6. CONCLUSION

The paper has argued for the potential benefits of Kautz
functions as an alternative parameterization for maximiz-
ing the feasible region in conventional MPC algorithms
with a fixed number of d.o.f.. It has been shown through
examples that feasibility can be improved without degrad-
ing the performance. It has also been shown that a sim-
ple re-parameterization of the degrees of freedom within
the input predictions can achieve better performance and
feasibility. However, of more significance, the paper has
tackled the question concerning the earlier proposed use
of Laguerre functions to parameterize the d.o.f. in the
predictions and clearly demonstrated that obvious alterna-
tives do exist and in fact, this paper indicates that Kautz
functions may indeed be preferable to Laguerre in general.

The authors believe that the field of how to increase the
feasible region, improve the performance and lower the
computational burden using alternative parameterizations
within the predictions clearly merits more work. This
paper has focussed on just one possible parameterisation
and future work will tackle the question of whether there
exists a ’systematic’ method for choosing the best param-
eterisation for any given problem. Moreover, it has been
noted that computational burden is linked not only to the
number of d.o.f. but also the optimisation structure and
thus the next step is to consider how easily one can tailor
a quadratic programming problem to KOMPC and thus
gain further computational benefits.
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