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Abstract: This paper investigates the hovering control problem of a drone on a 6-DOF mobile
platform. An inner-outer loop strategy based on high-gain observer is presented. In the outer
loop, the high-gain observer is designed to estimate the states of the drone such that its velocity
and acceleration measurements are not necessary, and then a nested saturation controller is
designed. In the inner loop, a hybrid controller which can be effectively used for avoiding
unwinding phenomenon is applied to regulate the attitude of the drone. Finally, a simulation
example is used to demonstrate the effectiveness of the proposed control method.
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1. INTRODUCTION

Drones have been widely applied for environment and
production surveillance such as offshore oil & gas explo-
ration and production, wind farm inspection, geography
mapping, and so on (Schäfer et al. (2016); Lee et al.
(2016)). Take the oil & gas production as an example.
Drones have been applied to increase the effecitivity of
areial inspection for facility integrity check, pollution mon-
itoring, as well as facility/pipeline inspection etc. Drone is
often operated remotely by professional operators from the
platform or boats. However, to realize a smooth and safe
landing of a commissioning drone on the moving deck is far
more complicated, and there seems to us that there is no
much study or development being found about automatic
landing of drone on a moving platform either.

Similar to the manned aircrafts’ landing on a mobile
platform procedure, the automatic landing of a drone
on a moving deck consists of two phases: hovering and
landing. During hovering phase, drones need to track the
3D trajectory of the moving deck, keep a fixed height to the
moving deck and adjust their attitudes properly for final
landing. In this paper, we will focus on the hovering control
of a drone. Normally, due to the functional controllability
constraint of the drone, it cannot track the trajectory of
the moving deck while keeping their attitudes matching.
In recent years, some approaches have been developed to
solve the similar hovering control problem. For example,
Choi and Ahn (2015) studied the point tracking of a drone
in 3D space and presented a backstepping-like feedback
linearization method for control design. The proposed
method is only designed for static position tracking. In
(Serra et al. (2016)), a visual-servo-based control law was
proposed for landing control of a drone on a moving target,
where the high-gain inner-loop control is applied such that
the attitude dynamcis are fast enough to neglect their
affects on the outer-loop control, which is used to control

the position of the drone. However, this method is usually
not effective for large drones due to large inertia and input
saturation. In (Tan et al. (2016)), an invariant ellipsoid-
based method control law was proposed for hovering of a
drone on a moving ship deck. Only the motion on heave of
the ship is considered and attitude control is not studied.
According to our survey, the existing approaches are still
not effective for hovering and landing control of a drone
on a 6-DOF moving deck. More recently, some methods
based on inner-outer loop control strategy provide an
inspiration for hovering control on a 6-DOF moving deck.
Cao and Lynch (2016) presented an inner-outer loop
control strategy for underactuated drone with input and
state constraints, achieving globally asymptotically stable
results for position and attitude tracking. Naldi et al.
(2017) proposed a robust inner-outer loop control scheme
for a drone with uncertain intertial matrix. However, the
velocity and acceleration are required to be measurable in
these two works. In most of low-cost drones, acceleration
cannot be measured. Therefore, hovering control for drones
without using velocity and acceleration measurements
would be more desirable.

In this paper, we investigate the hovering control problem
of a drone above a 6-DOF moving deck under disturbances.
The control objective is to make the drone track the trajec-
tory of the moving deck while achieving the best matching
attitude between the drone and the deck while safisfying
the functional controllability constraint. Towards this end,
the mapping between the deck and the desired trajectory
of the drone satisfying the functional controllability con-
straint is constructed, and then an inner-outer loop control
scheme based on high-gain observer is employed for control
development, where a nested saturation controller based
on the high-gain observer is proposed for the outer loop
control, and a hybrid control is applied for the inner-loop
control to avoid unwinding phenomenon.
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Fig. 1. Coordinate frames and hovering problem descrip-
tion

Notations: Throughout this paper, R, Rm and Rn×m

denote the spaces of real numbers, real m-vectors and real
n ×m matrices, respectively. The terms ‖ · ‖p and ‖ · ‖∞
denote the p-norm and infinity norm, respectively.

2. PROBLEM FORMULATION

2.1 Dynamic Model of Drone

To describe the motion of a drone and a 6-DOF moving
deck, three reference frames are defined as shown in Fig.
1(a): the inertial reference frame {I} fixed to the earth
surface, the platform body-fixed frame {B} attached to the
deck surface and the drone body-fixed frame {Q} attached
to the drone’s gravity center.

The drone is described by the following dynamic model:

ṗ = v
Mv̇ = −ufRe3 +Mge3 + df
Ṙ = RS(ω)
Jω̇ = S(Jω)ω + uτ + dτ

(1)

where p = [x, y, z]T ∈ R3 and v = [vx, vy, vz]
T ∈ R3

denote the position of the gravity center of the drone and
its velocity in the inertial reference frame {I}, respectively,
uf ∈ R is the scale translational control force, uτ ∈ R3

is the attitude control torque, M > 0 ∈ R and J =
JT > 0 ∈ R3×3 are the mass and the inertia matrix of
the drone, respectively, df ∈ R3 and dτ ∈ R3 are the
bounded unknown disturbances, g = 9.8 is the acceleration
of gravity, e3 = [0, 0, 1]T , S(·) ∈ R3×3 is a skew symmetric
matrix regarding a vector x = [x1, x2, x3]T ∈ R3 given as

S(x) =

[
0 −x3 x2
x3 0 −x1
−x2 x1 0

]
, (2)

and R ∈ SO(3) is the rotation matrix from {Q} to {I},
where SO(3) is the special orthogonal group of 3rd order:

SO(3) = {R ∈ R3×3 : RTR = RRT = I3, |R| = 1}. (3)

The element of SO(3) can be parametrized by a unit

quaternion as q =
[
η εT

]T
through Rodrigues formula:

R(q) = I3 + 2ηS(ε) + 2S(ε)2,

where η ∈ R and ε ∈ R3 are the scalar and vector
components of the unit quaternion q. See more details in
(Shuster (1993)). Then the kinematic equation (the third
equation of (1)) can be replaced by the following equation:

q̇ =
1

2
q ⊗ ν(ω) =

1

2

[
−εT

ηI3 + S(ε)

]
ω, (4)

where ν(ω) =
[

0 ωT
]T

and ⊗ is an operator between two

quaternions qi =
[
ηi ε

T
i

]T
, i = 1, 2, defined as follows:

q1 ⊗ q2 =

[
η1 −εTi
ε1 η1I3 + S(ε1)

] [
η2
ε2

]
.

2.2 Hovering Control Problem

This paper focuses on hovering control of a drone above
a 6-DOF moving deck. We assume that the desired tra-
jectory and attitude of the deck are determined by the

nonlinear functions pd(t) = [xd, yd, zd]
T ∈ R3 and γd(t) =

[φd, θd, ψd]
T ∈ R3 with respect to time t, respectively,

where pd(t) and γd(t) are 4th continuous differentiable.
Therefore, we can define the velocity and angular velocity
of the deck as vd(t) = ṗd and wd(t) = γ̇d, respectively.

Hovering control aims at tracking the position of the
moving deck and keeping a constant heaving distance
to the deck. This process is very important for a drone
landing on a moving deck safely. The most desirable
control is that the controlled drone can track the deck
while keeping the same attitude as that of the deck.
However, it is noted that the second equation of (1) is
underactuated, which means that as the drone flies along
the desired trajectory pd, its desired attitude R∗ must
satisfy the following functional controllability constraint
by neglecting disturbance df :

R∗e3 =
Mge3 −Mp̈d

uf
. (5)

Obviously, the moblie platform has its own intrinsic at-
titude Rd(γd) that usually cannot satisfy the constaint
condition (5). Since position plays a major role in landing
control, this paper will study how to make the drone track
the position of the deck while achieving the best attitude
matching.

To make the descent of the drone smooth, a descenting
function H(t) is defined. It is conveniently designed to be
a smooth sigmoid function. An example will be given in
Section 4. Denote H0 = H(t0) be the initial height and
Hf = H(∞) be the final height of the drone in the heave
of the deck as shown in Fig. 1(b).

It is noted that, to keep the heaving distance Hf , the
desired position z∗ of the drone in the inertial frame needs
to follow the following trajectory:

z∗ =
Hf

cos(θd)
+ zd. (6)

Therefore, the hovering control problem can be solved if
the drone can track the desired trajectory p∗d described as

p∗d = pd +H(t)e3 +
Hfe3

cos(θd)
. (7)

while keeping an attitude satisfying the constraint (5).

3. HOVERING CONTROLLER DESIGN

In this section, an inner-outer loop control strategy will be
introduced to design the hovering controller. The structure
of the inner-outer loop control is shown in Fig. 2.

Copyright © 2018, IFAC 246



dp fu

d d

d u

d dq

pp v

Fig. 2. Structure of Inner-Outer Loop Control

3.1 High-Gain Observer

The high-gain observer is introduced in the outer loop
control because velocity and acceleration measurement
may be unavailable for some low-cost drones. It is designed
based on the following lemma:

Lemma 1. (Behtash (1990)). Consider a system with its
output y(t) ∈ Rm and its first n − 1 derivative be-
ing bounded, i.e., there are postive constants Yk, k =
1, · · · , n − 1 such that ‖y(k)‖ < Yk. Given a high-gain
observer{

δξ̇i = ξi+1, i = 1, · · · , n− 1

δξ̇n = −λ1ξn − λ2ξn−1 − · · · − λn−1ξ2 − ξ1 + y(t)
(8)

with δ being any small positive constant, ξi, i = 1, · · · , n
being the observer states, and λi, i = 1, · · · , n − 1, being
chosen such that the polynomial sn+λ1s

n−1+· · ·+λn−1s+
1 is Hurwitz, then we have

1) ξk+1

δk
− y(k) = −δΨ(k+1), k = 0, 1, · · · , n − 1, where

Ψ = ξn + λ1ξn−1 + · · ·+ λn−1ξ1.
2) There exist positive constants t∗ and bk, only depend-

ing on Yk, k = 1, · · · , n, δ and λi, i = 1, · · · , n−1, such
that ‖Ψ(k)‖ ≤ bk for all t > t∗.

Obviously, Lemma 1 implies that y(k) can be estimated by
ξk+1

δk
bounded by δbk+1, k = 0, 1, · · · , n − 1. It is noted

that the high-gain observer does not need to know the
system dynamics but only its output. This property has
made the high-gain observer widely applied to estimate
complex nonlinear systems.

In this paper, a high-gain based on Lemma 1 is designed
to estimate the position and velocity of the drone under
disturbances. The designed high-gain observer is given as
follows: {

δπ̇1 = π2
δπ̇2 = −λ1π2 − π1 + p

(9)

where π1, π2 ∈ R3 are the observer states. Choose λ1 such
that s2 + λ1s + 1 is Hurwitz, and then the estimation of
the position and velocity of the drone can be described as

p̂ = π1 (10)

v̂ =
π2
δ

(11)

and there exist constants b1 and b2 such that

‖p− p̂‖ ≤ δb1 (12)

‖v − v̂‖ ≤ δb2. (13)

3.2 Translational Motion Control

Translational motion control aims at making the drone
track the desired trajectory p∗d such that the qudrotor can
hover on the deck while keeping a desired heaving distance.

Recall the translational motion control design with veloc-
ity feedback in (Naldi et al. (2017)) first. Let

z1 = p− p∗d, z2 = v − ṗ∗d.
With the first two equations of (1), we have{

ż1 = z2
Mż2 = −ufRe3 +Mge3 −Mp̈∗d + df

(14)

A vectored-thrust control strategy can be applied to design
the scalar controller uf . Define a control force vector
Fc(z1, z2) as follows:

Fc(z1, z2) = Mge3 −Mp̈∗d + κ(z1, z2). (15)

where κ(z1, z2) is a state feedback law satisfying κ(0, 0) =
0.

Substituting (15) into the second equation of (14), we have

Mż2 = −ufRe3 + Fc(z1, z2)− κ(z1, z2) + df . (16)

We can define a desired attitude Rc(z1, z2) ∈ SO(3)
satisfying

ufRce3 = Fc(z1, z2).

Choose the translational motion control law as

uf = ‖Fc(z1, z2)‖. (17)

Then, we have

Rce3 =
Fc(z1, z2)

‖Fc(z1, z2)‖
. (18)

Then, system (14) can be rewritten as{
ż1 = z2

Mż2 = −uf (R−Rc)e3 − κ(z1, z2) + df .
(19)

A nested saturation function σ(·) can be used to design
κ(z1, z2) to meet the saturation requirement of the scalar
control force uf . According to (Naldi et al. (2017)), the
following state feedback law is available to guarantee the
stability of (19) under the scalar control (17).

κ(z1, z2) = γ2σ

(
k2
γ2

(
z2 + λ1σ

(
k1
γ1
z1

)))
, (20)

where k1, k2, γ1, and γ2 are some positive constants,
and σ(·) is the saturation function satisfying the following
properties for any s ∈ R:

1) |σ̇(s)| ≤ 2;
2) |σ̈(s)| ≤ d for some d > 0;
3) sσ(s) > 0 for all s 6= 0, and σ(0) = 0;
4) σ(s) = sgn(s) for |s| ≥ 1;
5) |s| < |σ(s)| < 1 for |s| < 1.

For a vector s, σ(·) is simply extended by each element
satisfying the above properties. Note that each dimension
of κ(z1, z2) is bounded by γ2.

Next, we will further discuss the translational motion
control design independent of velocity and acceleration
measurements. With the high-gain observer proposed in
subsection 3.1, a new control law replacing the position
and velocity by their estimates is designed as

κ′(ẑ1, ẑ2) = γ2σ

(
k2
γ2

(
ẑ2 + γ1σ

(
k1
γ1
ẑ1

)))
, (21)

where ẑ1 = p̂− p∗d and ẑ2 = v̂ − ṗ∗d. Then we can define a
new control force vector F ′c(ẑ1, ẑ2) as

F ′c(ẑ1, ẑ2) = Mge3 −Mp̈∗d + κ′(ẑ1, ẑ2). (22)
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Let the translational motion control law in the form as

u′f = ‖F ′c(ẑ1, ẑ2)‖, (23)

and the desired attitude R∗c satisfying functional control-
lability constraint is given by

R∗ce3 =
F ′c(ẑ1, ẑ2)

‖F ′c(ẑ1, ẑ2)‖
. (24)

With the new translational motion control law (23), sys-
tem (19) is changed into{

ż1 = z2
Mż2 = −u′f (R−R∗c)e3 − κ′(ẑ1, ẑ2) + df .

(25)

Then, we have the following results.

Theorem 2. Consider the drone system (1) tracking the
desired trajectory p∗d described in (7). Design a high-gain
observer in the form of (9) with the ploynomial s2+λ1s+1
being Hurwitz by choosing proper constant λ1. Assume
that there exists a constant χ∗ > 0 such that ‖u′f (R −
R∗c)e3‖∞ ≤ χ∗. Under the translational motion control
law (23) with κ′(ẑ1, ẑ2) and F ′c(ẑ1, ẑ2) given in (21) and
(22), respectively, and k1, k2, γ1 and γ2 satisfying

γ2
k2

<
γ1
4
, 4k1γ1 <

γ2
4M

,
144k1
k2

< 1, (26)

system (25) is ISS with respect to the input −u′f (R −
R∗c)e3+df , without restricions on the initial states and the
input. In particular, the states of system (25) are bounded
by the following asymptotic bound

‖z1‖p ≤
6M

k1k2
‖v2‖p, ‖z2‖p ≤

3M

k2
‖v2‖p, (27)

where v2 = (u′f (R−R∗c)e3+(κ(z1, z2)−κ′(ẑ1, ẑ2))+df )/M .

Proof. Rewrite (25) in the form as ż1 = z2
Mż2 = −κ(z1, z2)− u′f (R−R∗c)e3

+(κ(z1, z2)− κ′(ẑ1, ẑ2)) + df

(28)

Let χ(R,R∗c) = −u′f (R−R∗c)e3. System (28) can be viewed

as a special case of system (C.1) in Appx C of (Isidori et al.
(2012)) with n = 2, q1(t) = 1, q2(t) = 1

M , v1 = 0 and
v2 = (χ(R,R∗c) + (κ(z1, z2)− κ′(ẑ1, ẑ2)) + df ) /M .

It is noted that the inequalities (12) and (13) imply that
there exists a constant κ∗ > 0 such that ‖κ(z1, z2) −
κ′(ẑ1, ẑ2)‖∞ ≤ κ∗. Therefore, there exists a constant
v∗2 > 0 such that ‖v2‖∞ ≤ v∗2 .

Directly using the Lemma C.2.1 in (Isidori et al. (2012)),
this theorem can be proved.

3.3 Attitude Control

In order to satisfy ‖χ(R,R∗c)‖∞ ≤ χ∗, an attitude control
will be designed to make R track R∗c . Note that the
rotation matrix R∗c is a mapping [φ∗c , θ

∗
c , ψ

∗
c ]T → R∗c ,

and have the relationship described in XYZ convention
as shown in (30). Therefore, through (24) we can fix ψ∗c
and θ∗c . ψ∗c can be chosen randomly, but in order to achieve
the best matching attitude with the deck, the thrid Euler
angle of the desired attitude is fixed by ψ∗c = ψd. In this
way, the desired attitude of the drone is determined, and

the quaternion q∗c corresponding to R∗c can be obtained
based on the quaternion algebra (Shuster (1993)).

Based on the third equation of (1), the desired angular
velocity ω∗c corresponding to R∗c is calculated by

ω∗c = GR∗Tc Ṙ∗ce3 + ψ̇de3,

where G is the matrix with the first, second and third rows
given by [0,−1, 0], [1, 0, 0] and [0, 0, 0], respectively, and ψ̇d
is the angular velocity of the deck in yaw.

Define the quanternion error q̃ and the angular velocity
error ω̃ as

q̃ = q∗−1c ⊗ q (31)

ω̃c = ω − ω̄c, (32)

where ω̄c = R(q̃)Tω∗c . Then, the attitude error system can
be written as ˙̃q =

1

2
q̃ ⊗

[
0
w̃c

]
J ˙̃ωc = Λ(ω̃c, ω̄c)ω̃c + S(Jω̄c)ω̄c − JR(q̃)T ω̇∗c + uτ + dτ

(33)
with Λ(ω̃c, ω̄c) defined as

Λ(ω̃c, ω̄c) = S(Jω̃c) + S(Jω̄c)− S(ω̄c)J − JS(ω̄c).

Remark 3. q̃ = [±1, 0, 0, 0]T are both the equilibriums of
the first equation of (33), because q̃ = [±1, 0, 0, 0]T denote
the same attitude in the 3D space.

Referring to the hybrid control method proposed in (May-
hew et al. (2011)), the attitude control law is designed as

uτ = JR(q̃)T ω̇∗c − S(Jω̄c)ω̄c − k3hε̃− k4ω̃c, (34)

where ε̃ is the vector component of q̃, k3 and k4 are postive
constants, and h ∈ {−1, 1} is a variable governed by{

ḣ = 0, hη̃ > −ζ
h+ ∈ sgn(η̃), hη̃ ≤ −ζ (35)

where η̃ is the scalar of q̃, ζ ∈ (0, 1) is the hysteresis
threshold, and sgn(η̃) is defined as

sgn(η̃) =

{
sgn(η̃), |η̃| > 0
{−1, 1}, η̃ = 0.

The attitude control law (34) is effective to handle the
unwinding phenomenon (Bhat and Bernstein (2000)) and
noise induced chattering (Mayhew et al. (2011)).

Then, we have the following theorem:

Theorem 4. Given the attitude error system (33), under
the control law (34), system state x̃ = [q̃T , ω̃Tc , h]T is
globally uniformly ultimately bounded. In particular, if
dτ ≡ 0, system (33) is asymptotically stable.

Remark 5. Equation (24) implies Ṙ∗ce3 = d
dt

F ′c(ẑ1,ẑ2)
|F ′c(ẑ1,ẑ2)|

.

Then, ω̇∗c is computed by

ω̇∗c = GṘ∗Tc Ṙ∗ce3 +GR∗Tc R̈∗ce3 + ψ̈de3

= GS(ω∗c )
TR∗Tc

d

dt

F ′c(ẑ1, ẑ2)

|F ′c(ẑ1, ẑ2)|
+G

d2

dt2
F ′c(ẑ1, ẑ2)

|F ′c(ẑ1, ẑ2)|
+ ψ̈de3.

3.4 Stability of the Closed-Loop System

Combing Theorem 2 and Theorem 4, we can further obtain
the stability of the whole closed-loop control system.

Theorem 6. Consider the drone system (1) and the desired
trajectory p∗d described in (7). Under the scalar trans-
lational motion controller (21) with γ1, γ2, k1 and k2
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R∗c =

[
cos(θ∗c ) cos(ψ∗c ) − cos(θ∗c ) sin(ψ∗c ) sin(θ∗c )

cos(φ∗c) sin(ψ∗c ) + cos(ψ∗c ) sin(φ∗c) sin(θ∗c ) cos(φ∗c) cos(ψ∗c )− sin(φ∗c) sin(θ∗c ) sin(ψ∗c ) − cos(θ∗c ) sin(φ∗c)
sin(φ∗c) sin(ψ∗c )− cos(φ∗c) cos(ψ∗c ) sin(θ∗c ) cos(ψ∗c ) sin(φ∗c) + cos(φ∗c) sin(θ∗c ) sin(ψ∗c ) cos(φ∗c) cos(θ∗c )

]
(30)

satisfying (26), and the attitude controller (34) with k3 > 0
and k4 > 0, the tracking errors z1, z2, q̃ and ω̃c are globally
uniformly ultimately bounded.

This theorem is obviously based on the ISS property in
Theorem 2 and the globally uniformly ultimately bounded
property in Theorem 4, and thus the proof is omitted here.

Remark 7. It can be observed from Theorem 2 and Theo-
rem 4 that the tracking errors are dependent on df , dτ and
the estimation errors of the high-gain observer. Since small
δ can enhance the accuracy of the high-gain observer, the
tracking errors of the drone can also mitigated by choosing
small δ.

4. SIMULATION STUDIES
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Fig. 3. The position estimation error of the high-gain
observer.
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Fig. 4. The velocity estimation error of the high-gain
observer.

In this section, a numerical example is presented to verify
the effectiveness of the proposed control solution. The
dynamic model of the drone is given by (1) with system
parameters: M = 3.25kg, J = diag(0.032, 0.032, 0.164),
and df and dτ being the Gaussian white noises with
maximum aplitude of 1.5N and 0.05Nm, respectively.

The position trajectory and Euler angles of the 6-DOF
deck follow the following nonlinear functions:
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Fig. 5. The position trajectory of the drone.
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Fig. 6. The attitude trajectory of the drone.
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Fig. 7. The translational motion control force and attitude
control torques of the drone.

pd(t) =

[
6−5 cos( π30 t)

−0.5−4 sin( π30 t)

sin(0.8t)

]
, γd(t) = 0.05

[
− cos(2t)
sin(2t)
− cos(2t)

]
,

respectively. The descending function H(t) is defined as

H(t) = H0 +
Hf −H0

1 + e
−6(2t−10)

10

, (36)

where, the initial height H0 of the drone is determined by
its initial position in Z axis. The drone is desired to hover
at the height Hf = 1m above the deck. Then, the desired
position trajectory p∗d in (7) is obtained.
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Fig. 9. The tracking errors of the drone.

The parameters of the high-gain observer (9), the control
force (21) and the control torques (34) are given as:
δ = 0.1, λ1 = 2, k1 = 0.1, k2 = 26, γ1 = 0.5, γ2 = 26,
k3 = 40 and k4 = 2.

Simulation results are shown in Figures 3-9. Figures 3
and 4 show the position estimation error and velocity
estimation error of the high-gain observer, respectively.
It is observed that the estimation errors are very small
and thus the designed high-gain observer is effective. In
Figure 5, the blue dash line denotes the desired trajectory
p∗d and the red line is the trajectory of the drone. It is
observed that the drone tracks the desired trajectory with
very small tracking errors. Figure 6 illustates that the
attitude of the drone tracks the desired attitude q∗c . Figure
7 shows that the control force uf and the control torques
uτ are bounded. In Figure 8, the blue line denotes the
trajectory of the deck and the red line is the trajectory of
the drone. From Figure 8 as well as Figure 9, it is observed
that the drone tracks the moving deck while keeping an
approximate height Hf = 1m above the deck. In summary,
the simulation results demonstrate the effectiveness of the
proposed control solution.

5. CONCLUSION

This paper studies the hovering problem of a drone above
a 6-DOF moving deck. A high-gain observer is designed
to estimate the position and velocity of the drone. Then,
a nested saturation control is designed based on the high-
gain observer to make the drone track the trajectory of the
deck and keep a fixed heaving distance above the moving
deck. A hybrid control is applied to make the attitude

of the drone achieve the best matching with the attitude
of the deck while satisfying the functional controllability
constraint of the drone. The hybrid control is also available
to aviod the unwinding phenomenon. The stability of the
whole closed-loop system is theoretically proved. In the
future, it would be interesting to further investigate visual
based landing control of a drone on a moving deck and
make an implementation on a practical drone.
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