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Abstract: We use state-based stochastic greybox modeling - combining physics and statistics
- to model the slugging phenomenon. We extend the model of DiMeglio et al. (2010) to include
random components and variable flow coefficients, providing 30 seconds prediction intervals.
Altogether six models, each comprising no more than ten equations, are fitted to off-shore riser
training data and then cross-validated on new data sets. We use advanced statistical methods to
1) obtain optimal parameters of a given model fitted to measurements, 2) give model predictions
with uncertainty intervals, and 3) quantitatively measure the relative goodness of the extended
models. These features of our reductive method are general and can be applied to any data
sets. For the slugging data, simpler models are preferable over the more complex ones (although
the differences are minute for practical purposes in oil and gas industry) and a high statistical
significance obtained on the training data does not imply improved long term prediction on
independent data. Better physical (mechanistic) models to capture slugging oscillations are
needed, ultimately to develop effective control strategies.
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1. INTRODUCTION

In this report the analysis is performed using greybox
models consisting of a continuous time stochastic model
(represented by a set of Stochastic Differential Equations,
SDEs) and a set of discrete time observation equations.

We elaborate on our detailed methodology, Kristensen
and Madsen (2003b), to demonstrate how physical models
and statistical analyses are to be used to tackle and
interpret the Big Data problems, such as slugging, in
oil&gas industry.

Our report essentially tests how good is the (extended)
model of slugging by DiMeglio et al. (2010) when applied
to our data sets. As we explain below, the model extensions
are guided by statistical measures on data and are not
necessarily interpretable in physical terms.

1.1 General formulation

The most general set up which can be handled by the
estimation procedure used here is given by the continuous
time SDE

dxt = f(xt,ut, t,θ)dt+ σ(u, t,θ)dw, (1)

where xt is the hidden state, u is input and θ parameters;
f is the drift term, σ the diffusion term and w the
Wiener process, Øksendal (2003). The drift term describes
the physical ODE part of the system, while the diffusion
term describes the random perturbations of the system
in continuous time including the lack of knowledge of

the system. In addition to (1), the stochastic state space
formulation consist of a discrete time observation equation

yk = h(xk,uk, tk,θ) + ek, (2)

where subscript k refer to the observation, state or input at
time tk, and the observation error ek is assumed to follow
a Gaussian distribution with expectation 0 and variance
S(uk, tk,θ). In the numerical scheme we estimate θ as well
as ek.

One of the strengths of our modeling method is the
reduction of complexity, coupled to the quantification
of uncertainties. Our three-state models have about 10
equations and less than 30 variables in total, in contrast
to the more comprehensive physical models, e.g. with over
20 equations and more than 100 variables, E. Jahanshahi
(2014).

1.2 The initial system of equations

All the variables of the system are listed in Table A.1. The
initial state variables (based on DiMeglio et al. (2010)) 1

are

dmGB =((1− ε)(wGI + uRLG,t)− wG,t)dt+ σ1dw1,t (3)

dmGR =(ε(wGI + uRLG,t) + wG,t − wGO,t)dt+ σ2dw3,t

(4)

dmLR =(wLI − wLO,t)dt+ σ3dw3,t, (5)

1 First listed in the report Zugno et al. (2011), available on request.
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where mGB is the mass of gas in the gas bubble, mGR is
the mass of gas in the riser and mLR is the mass of liquid
in the riser. We further have for the individual components

wG,t =Cgmax(0, PGB,t − PBOT,t) (6)

wGO,t =wO,t
mGR,t

mGR,t +mLR,t
(7)

wLO,t =wO,t
mLR,t

mGR,t +mLR,t
(8)

wO,t =uSCV,tCc
√
PTOP,t − PACV,t, (9)

where the pressures PTOT,t and PBOT and are given by
the algebraic equation

PGB,t =
RT

M · VB
mGB (10)

PTOP,t =
R · T

M
(
Vr − mLR,t+mLST

ρL

) (11)

PBOT,t =PTOP,t +
g sin(θ)

A
(mLR,t +mLST ). (12)

Temperature was not provided, and was put as constant
equal to the average value of the temperature in the data
set presented in Zugno et al. (2011).

The observation equations are

YBOT,k =PBOT,k + e1,k (13)

YTOP,k =PTOP,k + e2,k (14)

YGO,k =
wGO,k
M

+ e3,k (15)

YLO,k =
wLO,k
ρL

+ e4,k, (16)

where ei,k are mutually independent Gaussian white noise
processes, with the variance of ei,k equal s2

i .

1.3 The final system of equations

There is an assumed delay between the riser and the
separator, initially modeled by introducing more state
variables, Jónsdottir et al. (2010). The estimation though
yielded very large values of the diffusion coefficient and the
time delay i.e. large uncertainty intervals. We disregarded
the observed liquid flow in the further analysis.

To evaluate the likelihood, the state of the system (given
by equations (3)-(5)) is estimated, implying that the initial
state of the system is also estimated. This was difficult to
estimate in some situations. As it is anticipated that this
problem is caused by the strong non-linearities (given by
(10)-(12)) in the transfer between the states and the obser-
vation, we formulated the state equations in the pressure
domain rather than in the mass domain. A full stochastic
transformation of the state, given by Itó’s formula (see
e.g Øksendal, 2003), would give a complicated expression
for the diffusion term in the transformed domain. As the
stochastic part of formulation in (3)-(5) does not include
any physical hypothesis on the diffusion, we will consider
the transformed deterministic part of the equations with
additive diffusion and note that the interpretation of the
diffusion is different in the transformed domain. A small
simplification of the transformed system equations is ob-
tained by considering the pressure difference between the
top pressure and the bottom pressure (∆p,t = PBOT,t −
PTOP,t), rather than the bottom pressure.

The resulting system of equations are given by

dPGB,t =
R · T
M · Vr

[(1− ε)(wGI + uRLG,t)− wG,t]dt+

σ1dw1,t (17)

d∆p,t =
g sin(θ)

A
(wLI − wLO,t)dt+ σ2dw2,t (18)

dPTOP,t =
1

Vr − A∆p

sin(θ)gρL

[
R · T
M

[ε(wGI + uRLG,tM)+

wG,t − wGO,t] +
PTOP,t

ρL(wLI − wLO,t)

]
dt

+ σ3dw3,t, (19)

where mGR,t, and mLR,t are described by the algebraic
equations

mGR,t =M

(
Vr −

A∆p,t

sin(θ)gρL

)
PTOP,t
R · T

(20)

mLR,t =
A∆p,t

g sin(θ)
−mLST , (21)

the algebraic expression for mGB is not needed because
it enters through its effect on the pressure of the gas
bubble only. The observation equation for the reduced and
transformed system is given by

YBOT,k =∆p,k + PTOP,t + e1,k (22)

YTOP,k =PTOP,k + e2,k (23)

YGO,k =
wGO,k
M

+ e3,k, (24)

with the total of six parameters to describe the stochastic
behaviour of the model (three diffusion parameters and
three observation variances). The most important state
variable is the top pressure, and it was therefore decided to
emphasize this state variable in the estimation. One way of
doing this is by fixing the observation variance for the top
pressure at a lower level than the observation variance of

the bottom pressure. It was therefore decided set s2
2 =

s21
2 .

2. DATA

Data sets are collected in a field in August 2010 and
January 2011, and fully described in Ref. Cao (2011). All
data sets were given with a time resolution of 3 seconds.

The first step of the data analysis is to choose one data set
which will serve as the training set for model development.
The aim of the modeling exercise is to be able to predict
slugging, in order for this to be realistic the chosen training
set should clearly hold information about this transition.
One data set that hold this kind of information is the
measurement series on January 28 at 1400 hours (Fig. 1).

The data show the increased opening of the slug control
valve lead to a transition into the slugging phase after
approximately 2.5 hours of recording. To control the
system the valve was choked and the system settle in the
stationary phase after approximate 4 hours of measuring.

The likelihood estimation relies on the assumption of
Gaussian observations, as stated in Section 1.1. Serious
departure form this assumption will jeopardize the conclu-
sions which can be drawn from data. Unfortunately, the
provided data contained many repeated value of the mea-
surements, as illustrated in Fig. 2. Such measurements can-
not be assumed to come from a continuous-discrete time
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Fig. 1. Observations of the training set. Left column: The
input variables. Right column: The output variables.

Table 1. Number of shifts (equal the number
of datapoints used for estimation) and number
of levels in the training set. Total number of

observations is 5400

no. of shifts levels

YBOT 803 68
YTOP 1382 171
YGO 1558 1467

state space model as described in Section 1.1, and we thus
removed repeated measurements, using only data where
the measurements change. We did not wish to impose any
models on data, such as the first order hold interpolations.
Likewise, no variables, e.g. liquid production, were taken
to be directly known if they were not observed - we went
with the measurement we had.

As illustrated in Table 1 the situation shown in Fig. 2
is not unique, and for bottom pressure the are only
803 observations in the reduced dataset. The reduction
correspond to a reduced sampling frequency, the numbers
in Table 1 imply an average sampling frequency of 20, 12,
and 10 seconds for YBOT , YTOP , and YGO respectively. Of
courses this imply that we might not be able to capture
some of the fast dynamics of the system. In addition
to many repeated measurements, the number of different
values of the measurements is also significantly lower than
the number of measurements in the reduced observation
set. This also imply that the measurement does not span
the actual values.

3. MODEL DEVELOPMENT

Parameter estimation in this work is based on a well-
developed statistical theory for testing, namely the like-
lihood estimation by the Extended Kalman Filter (EKF)
Jazwinsky (1970). Note that in this approach we do not
need a state for each parameter. The method is described
in Kristensen et al. (2004b) and has been implemented
in our software on continuous-time stochastic modeling
the CTSM-R, Kristensen and Madsen (2003a,b), used to
obtain the filter predictions for our models.

The basic assumption in the estimation procedure is
that the one-step predictions of the observations can be
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Fig. 2. Observations of the training set, left column show
the bottom pressure while right column show the top
pressure. grey dots indicate the provided data set
while black dots indicate the data used for estimation.

described by a Gaussian random variable i.e.

Ŷ k+1|k = Y k+1|Y k ∼ N(h(X̂k+1|k,uk, tk,θ),Σyyk+|k),

(25)

where X̂k+1|k, and Σyyk+|k are obtained by the filtering

equations. In the case of the EKF this amounts to a
set of ordinary differential equation which are solved
numerically. The likelihood is simply given as the product
of all probability density functions (defined by (25)) taken
at the observations

L(θ;YN ) = p(Y 1|X0,θ)

N−1∏
i=1

p(Y i+1|Y i,θ), (26)

where p(Y 1|X0,θ) is the density for given X0, and
p(Y i+1|Y i,θ) is defined by (25). All parameter estimation
and the initial model development is based on maximum
(log-)likelihood estimation.

The one-step state prediction (X̂k+1|k) gives the expected
path of the state variable given the model, the obser-
vations, and the filter assumptions. By formulating an
extended state space model given by

dxt =f(xt,ut, t, θ̃, θi,t)dt+ σ(u, t, θ̃)dw (27)

dθi,t =σθdwθ, (28)

where θ̃ = θ \ θi = {θ1, .., θi−1, θi+1, .., θp} and p is the
dimension of the parameter space, it is possible to find
the expected path of the random walk parameter θi. The
methodology is presented in Kristensen et al. (2004a), and
in the reference the selection of θi is based on values in the
diffusion matrix σ. Such a strategy is however complicated
when the parameters cannot be attributed to a specific
state (as is the case in the example considered here). We
therefore estimated the extended state space model with
each of the parameters treated as random walk parameters
(one at the time).

The random walk parameter is then plotted as a function
of the state predictions and the slug control valve opening
(not shown); based on these plots model extensions were
formulated and tested in a likelihood framework, see
Table A.2.

3.1 Model 0: the benchmark model

The first step of the model development procedure is to es-
timate the parameters of the benchmark model presented
in Section 1.1 and 1.3.

All parameters are restricted to positive real numbers
and good practice for estimation of such parameters is
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to estimate them in a transformed domain. Most of the
parameters are however expected to be well determined
and transformation in such cases is not necessary; diffusion
parameters and observation variances are on the other
hand often difficult to estimate. To ensure stable estimates
these are therefore estimated in the log-domain. Also, the
parameter ε, the opening of the virtual valve, is restricted
to the interval (0,1) and we estimate the logit transform
of ε rather than ε itself, i.e. we estimate ε̃ and use the
back-transform

ε =
eε̃

1 + eε̃
(29)

such that ε̃ ∈ R.

The estimation results are given in the first column of table
A.3. Most of the parameters are well determined, except
for mLST , ε̃, and σ̃3. This imply that these parameters
could be removed from the model, but we keep the non-
significant ones and focus on model extensions rather
than reductions. For ε̃ the conclusion would be ε̃ =
0, which actually means that ε = 1

2 which is not a
meaningful alternative. The large standard deviation does
however imply that the 95% confidence interval for ε equals
[0.03,0.65].

Table A.3 is one of the highlights of our method, listing (for
all models) the optimal parameter values and their 95%
confidence intervals, obtained via the likelihood estimation
of Section 3.

3.2 Model extension

We have extended the benchmark model five times (Mod-
els 1-6), essentially varying the constant coefficients guided
by the trends in data, see the text below equations (27)
and (28). The extensions are shown in Table A.2: Diffusive
coefficients σ1 and σ2 are made functions of the control
valve opening uSCV (Models 1 and 2), wLI and VB have
linear dependence on uSCV and pressure ∆p, respectively
(Models 3 and 4) and Cg is linear or quadratic function
of PGB (Models 5 and 6). All model extensions are nested
and likelihood ratio tests can therefore be applied - the
improvements are significant. We emphasize that goodness
of models can be judged only relatively, see the next
Section. Also, even though statistical extensions might not
give any meaningful interpretation, they should be judged
against a required purpose, e.g. prescribed time-step ahead
predictions.

In Fig. 3 shown are the 30 second prediction (red line)
along with the confidence limits (grey area) and the
simulation i.e. the pure prediction of model without data
update (blue line), for the final Model 6. The amplitude of
the simulation is still small compared to what is seen from
data - in other words, oscillatory behavior of the slugging
is not captured by the model (even though the p-values are
extremely small, indicating high significance, Table A.2).
The simulation is however the unconditional expectation
not a real i.e. single-run simulation, and some averaging
should be expected.

4. CROSS VALIDATION

The next step is to test model performance on independent
datasets. To do this the remaining datasets from the

Fig. 3. Modeling results for Model 6. Left column: Ob-
served values of pressure and flow (black dots), 30
second predictions of the observations (red lines), 95%
confidence limits (grey area), and simulated values
(blue lines). Right column show a zoom on the region
where the system enters the slugging regime.

January trial is divided into two groups, one with similar
operating conditions as the training-set. Here we define
similar operating conditions as dataset where the slug
control valve opening is in the same range as in the test-
set. The final goal of the model is to make good 30 second
predictions, but the simplest evaluation is obtained by
comparing the likelihood (i.e. 3 seconds predictions) for
the different test sets across the models. Even though this
is not the final goal this simple evaluation will give an
indication of the performance of the 30 second predictions.

A summary of likelihoods for each of the models is given
in Table A.4, when operating conditions are similar to
the test set. Model 5 is the best performing model while
Model 6 has a very poor performance (probably due to
the behavior of the parameter Cg, when the second order
polynomial is introduced). It was not possible to calculate
the likelihood for Model 5 on part of the test set where
operating conditions was not similar to the training-set
(Test 2). This is probably due to the fact that Cg can
obtain negative values.

In general, complex models are preferred on Test 1, while
simple models are preferred on Test 2. This implies that
extrapolation of the results obtained on the training-set
is not possible, and further, when the best performing
model on Test 1 cannot be evaluated on Test 2, some more
robust models should be in place. Note, however, that our
precision is very high and that the obtained parameter dif-
ferences seen in table A.3 may not be practically important
in industry. But the method will work, of course, also when
model differences turn out to be large, or decisive.

5. CONCLUSION

We have applied detailed physical-stochastic, greybox,
modeling to the problem of severe slugging.

The data used for this work have many repeated mea-
surements, which imply that the time resolution in the
measurements is not 3 seconds, as would be indicated
from the time distance between observations. The number
of observations removed due to repeated measures vary
between the observations, and for bottom pressure almost
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7 in 8 measurements were removed, which give an average
time resolution of about 20 seconds. For top pressure the
time resolution is about 12 seconds and for gas flow it is
about 10 seconds. Due to this it might be difficult to detect
the fast dynamics in the system.

The SDE models discussed in this report are all quite com-
plex and even the simplest benchmark model is a highly
non-linear SDE-model. The model development applied
in Section 3 demonstrate that it is possible to extract
information embedded in the observation by random walk
parameter identification. The identified model extensions
were all highly significant on the training set. Cross valida-
tion did however show that the most complex models were
not robust and the performance on other data sets were
generally poor. In other words, when operating conditions
are not similar to those in the training-set, cross validation
favoured simpler models. The most likely cause for this
break down is that extrapolation led to negative values of
the parameter Cg (in the case of Model 5) or very extreme
values of Cg (in the case of Model 6).

It is clear that better overall performance can be obtained
by including more data sets in the training-set. These
should include a larger range of operating conditions to
give a more globally applicable model. The benchmark
model (Model 0) is based on a mechanistic understanding
of the system, while the model extensions are based
purely on statistical reasoning. They, too, could include
mechanistic reasoning.

Stochastic greybox models can be successfully employed
for control purposes, in, for example, model predictive
controllers, Halvgaard et al. (2012). For the control of
slugging though, a better mechanistic base model is needed
to capture the behavior near the equilibrium point i.e., the
occurrence of (the onset of) oscillations.
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Appendix A. TABLES

Table A.1. Variables in the deterministic part
of the system equation, abbreviations of type
refer to; SV= state variable, AE= algebraic
equation, Parameter= Parameters to be esti-
mated, Constant= Parameters held constant
throughout the analysis and Input= Observed

time-varying inputs.

Variable Meaning Type Value Unit

mGB Mass of gas in the bubble SV/AE kg
mGR Mass of gas in riser SV/AE kg
mLR Mass of liquid in riser SV/AE kg
mLST Constant mass of liquid in riser Parameter kg
wGI Gas production AE m3/s
wG Gas flow through virtual valve AE m3/s
wGO Gas flow through the SCV AE m3/s
wLI Liquid production Parameter m3/s
wLO Liquid flow through SCV AE m3/s
uRLG,t Riser lift gas Input m3/s
uSCV,t SCV opening Input fraction

CG Flow coefficient Parameter kg

s
√

bar

Cc Flow coefficient Parameter kg
s·bar

PGB,t Pressure in the gas bubble AE/SV bar
PBOT,t Pressure at the bottom of the riser AE/SV bar
PTOP,t Pressure at the top of the riser AE/SV bar
PACV,t Production pressure Input bar
ε Opening of virtual valve Parameter fraction
Vr Volume of the riser Constant m3

ρL Density of liquid Constant 832.5 bar
kg

R Ideal gas constant Constant 0.08314 m3·bar
K·kmol

T Temperature Constant 297 K

M Molar weight of gas Constant 23 kg
kmol

VB Volume of gas bubble Parameter m3

g Gravity Constant 9.81 · 10−5 bar·m2

kg

θ Angle of riser Constant 1.57 rad
A Cross section area of riser Constant 0.0856 m2

Table A.2. Summary of the model development
presented in Section 3. Columns 1-6: model
number, model extension, log-likelihood, num-
ber of degrees of freedom, -2 times the log-

likelihood ratio and p-value, respectively.

Model Extension log(L) DF −2 log Λ p-value

0 730 12
1 σ1 = exp(σ̃1 + σ̃11uSCV ) 764 13 69.1 1.1e-16
2 σ2 = exp(σ̃2 + σ̃21uSCV ) 789 14 48.8 2.9e-12
3 wLI = wLI,0 + wLI,1uSCV 805 15 32.7 1.1e-08
4 VB = VB,0 + VB,1∆p 826 16 41.8 1.0e-10
5 Cg = Cg,0 + Cg,1PGB 865 17 77.1 <1.0e-16
6 Cg = Cg,0 + Cg,1PGB + Cg,1P 2

GB 899 18 68.6 1.1e-16
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Table A.3. Estimation of parameters and their
confidence intervals (in parentheses) for model
1-6. Parameter that are significantly different
from 0 on a 95% level are marked in bold face.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Drift parameters

wLI,0 106.30 106.24 105.00 14.40 11.30 10.05 102.78
(1.152) (1.385) (1.485) (5.333) (1.489) (7.61) (1.021)

wLI,1 444.49 458.02 469.15 440.75
(29.854) (10.105) (34.208) (69.123)

VB 45.54 46.53 45.84 45.09 0.07 5.5e− 6 34.73
(1.94) (2.066) (2.304) (2.256) (0.546) (1.4e− 5) (1.383)

VB,1 16.70 9.85 27.33
(0.943) (0.393) (2.960)

Cg 1.83 1.87 1.82 1.87 2.00 2.66 2.29
(0.096) (0.090) (0.104) (0.100) (0.101) (0.079) (0.021)

Cg,1 −0.51 0.02
(0.037) (0.016)

Cg,2 −0.29
(0.007)

Cc 173.13 173.06 172.64 173.16 172.65 174.26 172.13
(1.773) (2.015) (2.199) (2.124) (2.113) (1.839) (1.63)

ε̃ a) −1.40 −1.40 −1.46 −1.95 −1.62 −4.91 −1.81
(1.057) (2.010) (1.226) (0.900) (0.110) (0.533) (0.119)

wGI 4.00 3.94 3.96 3.98 4.04 4.07 4.12
(0.035) (0.035) (0.034) (0.030) (0.029) (0.027) (0.028)

mLST 1.9e− 4 7.0e− 32 0.96 0.06 0.05 0.06 0.03
(0.113) (1.2e− 30) (0.65) (0.149) (0.062) (0.062) (0.024)

Diffusion parameters

σ̃1 b) −2.39 −12.73 −15.36 −15.8 −17.02 −16.07 −13.45
(0.053) (0.055) (0.479) (0.667) (0.121) (0.060) (0.010)

σ̃11 b) 49.81 62.46 64.41 69.81 67.8 53.58
(0.242) (2.334) (3.209) (0.476) (0.381) (0.053)

σ̃2 b) −2.47 −2.49 −8.72 −9.44 −9.31 −8.74 −9.15
(0.029) (0.030) (0.878) (0.195) (0.678) (0.340) (0.015)

σ̃21 b) 30.13 33.5 32.83 29.71 31.90
(4.280) (0.973) (3.332) (1.668) (0.083)

σ̃3 −11.12 −13.12 −11.12 −10.59 −10.30 −9.97 −9.76
(160.850) (13.938) (4.141) (11.600) (16.53) (16.933) (8.021)

Variance of observation noise
log(s21) −1.49 −1.54 −1.56 −1.55 −1.54 −1.57 −1.67

(0.043) (0.040) (0.046) (0.045) (0.043) (0.037) (0.040)
log(s23) −7.97 −7.87 −7.94 −7.91 −7.86 −7.64 −7.64

(0.084) (0.030) (0.095) (0.091) (0.094) (0.084) (0.052)
a) ε = exp(ε̃)/[1 + exp(ε̃)]
b) σi(σ̃i, σ̃i1, uSCV ) = exp(σ̃i + σ̃i1uSCV )

Table A.4. Log-score for each of the estimated
models with linear hypothesis on the parame-
ters; L28at14 is the training set, L test 1 is
test sets with similar (to L28at14) operating
conditions and L test 2 are data sets with
different operation conditions. The best per-
forming model in each row is marked in bold

face.

Model 0 1 2 3 4 5 6

L28at14 730 764 789 805 826 865 899
L test 1 16685 17049 17352 17506 17596 17614 11900
L test 2 14461 14586 14120 14309 14470 NA 9866
L test all 31146 31635 31472 31815 32066 NA 21765
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