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Abstract: Automated Managed Pressure Drilling (MPD) is a method for fast and accurate
pressure control in drilling operations. The achievable performance of automated MPD is
limited, firstly, by the control system and, secondly, by the hydraulics model based on which
this control system is designed. Hence, an accurate hydraulics model is needed that, at the same
time, is simple enough to allow for the use of high performance controller design methods. This
paper presents an approach for nonlinear Model Order Reduction (MOR) for MPD systems.
For a single-phase flow MPD system, a nonlinear model is derived that can be decomposed into
a feedback interconnection of a high-order linear subsystem and low-order nonlinear subsystem.
This structure, under certain conditions, allows for a nonlinear MOR procedure that preserves
key system properties such as stability and provides a computable error bound. The effectiveness
of this MOR method for MPD systems is illustrated through simulations.
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1. INTRODUCTION

Drilling for oil and gas is performed in the presence of
a circulating drilling fluid called drilling mud. The mud
is pumped into the drillstring at high pressure. At the
well bottom, it leaves the drillstring through nozzles at
the bit to enter the annulus. It then flows up through the
annulus, carrying rock cuttings out of the well. Moreover,
the mud is used to control the annulus pressure within
a specific range to avoid, on the one hand, an influx from
surrounding formations and, on the other hand, fracturing
the formations. This is conventionally accomplished by
changing the mud density. However, this method is slow
and inaccurate and it lacks a means of compensating
transient pressure fluctuations.

To overcome such drawbacks of conventional pressure con-
trol methods, the method of managed pressure drilling
(MPD) has been introduced, see e.g. Stamnes et al. (2008).
In MPD, the annulus is sealed off at the top with a
rotating control device and the mud is circulated out of the
well through a choke valve, see Fig. 1. This combination
provides a surface back pressure that can be controlled by
? This research has been carried out in the HYDRA project, which
has received funding from the European Union’s Horizon 2020
research and innovation program under grant agreement No 675731.

changing the choke opening. In automated MPD systems,
the surface pressure, and thereby the Bottom-Hole Pres-
sure (BHP), is controlled by an automatic control system
Mahdianfar and Pavlov (2017); Kaasa et al. (2012).

The performance of the control system of an automated
MPD system is dependent not only on the controller
design, but also on the hydraulics model used for designing
the control system. This model should be accurate enough
to capture the essential hydraulic characteristics and,
at the same time, the complexity of the model should
be restricted to facilitate the application of established
system-theoretic analysis and design techniques. Existing
low-complexity models, such as in Kaasa et al. (2012),
are, however, incapable of capturing essential transients
such as the propagation of pressure waves. Ignoring such
phenomena in modeling and controller design can cause
a failure in the accomplishment of control objectives. It
can even cause instability, which is especially probable
in the case of long wells Landet et al. (2013). The goal
of this paper is to construct a high-fidelity, though low-
complexity, model for single-phase flow MPD systems for
control purposes.

For many drilling scenarios, an MPD system can be
described accurately by a system of linear hyperbolic
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Fig. 1. A simplified schematic diagram of an MPD system.

Partial Differential Equations (PDEs) (see Aarsnes et al.
(2012)) and accompanying boundary equations. These
boundary conditions are implicit and highly nonlinear,
but act only locally. For controller design, we are more
interested in system descriptions in the form of low-
order models in terms of Ordinary Differential Equations
(ODEs), for which control theory is well developed. This
ODE model can be obtained by spatially discretizing the
PDE, but the resulting discretized model is typically of
high order and hence not suitable for controller synthesis.

Model reduction may at this point be employed to obtain
a low-order approximation inheriting the key properties of
the original model. Model reduction for MPD applications
has been investigated, but to a limited extent. Mahdianfar
et al. (2012) used a linear MOR method for controller
reduction. Using a staggered-grid approach, Landet et al.
(2012) derived a high-order model and used a linear model
reduction method for reducing that model. In a later work,
Landet et al. (2013) reduced the complexity of their model
simply by using a low resolution coarse discretization
of the PDE model. This however lacks a quantitative
measure on the achieved accuracy. Nonlinear MOR in the
context of MPD automation is therefore still an open issue
which deserves more attention. In this paper, given 1) the
spatially discretized ODE model combined with 2) (local)
nonlinear boundary conditions, the resulting model is a
nonlinear system comprising high-order linear dynamics
with local nonlinearities. For this class of systems, a MOR
procedure has been recently developed by Besselink et al.
(2013). This method, unlike many other MOR methods for
nonlinear systems, preserves key system properties (such
as L2 stability). Moreover, it provides a computable error
bound on the error induced by the reduction.

The main contributions of this paper are twofold. First, a
control-relevant hydraulics model is developed for single-
phase flow MPD systems. The model is obtained by
employing a high-resolution discretization scheme for the

PDE equations and a characteristics-based method for
dealing with the nonlinear boundary conditions. Second,
in view of its particular structure, the complexity of the
resulting nonlinear model is reduced by employing the
above-mentioned MOR method.

The rest of this paper is organized as follows. Section 2
is devoted to the mathematical modeling of the system.
In Section 3, the MOR procedure is described. Illustrative
simulation results are presented in Section 4 and, finally,
conclusions are presented in Section 5.

2. MATHEMATICAL MODELING

An MPD system can be regarded as two long pipes which
are connected through a bit in the middle. Moreover, the
inlet and outlet of the connected pipes are connected to
the pump and choke, respectively. In what follows, a model
is derived for the system based on this description and the
schematic diagram in Fig. 1.

2.1 Flow model in a single pipe

PDE model: A single-phase laminar flow, which is the
case in many drilling scenarios, in a pipe can accurately
be described by the linear PDE system (see Aarsnes et al.
(2012))

∂q

∂t
+ Ψ

∂q

∂x
= F (x)q, (1)

with

q =

[
ρ
ρv

]
,Ψ =

[
0 1
c2l 0

]
, F =

[
0 0

g sin(θ(x)) −32µm
ρ0d2

]
,

and where x ∈ [0, l] and t are the spatial and time
variables, respectively, and l is the length of the pipe. The
liquid density, velocity, and pressure are denoted by ρ(x, t),
v(x, t) and p(x, t), respectively, whereas µm, d, θ(x), g and
cl are the liquid viscosity, the hydraulic diameter of the
pipe, the pipe inclination, gravitational acceleration, and
sound velocity in liquid, respectively. Note that a linear
PDE model is used to avoid distributed nonlinearities in
the ODE model to be derived. The equation of state,
describing the relation between the pressure and density,
is chosen as in Kaasa et al. (2012), i.e.,

p = c2l (ρ− ρ0) + p0, (2)

where p0 and ρ0 are the reference pressure and density,
respectively. The inlet and outlet boundary conditions are
implicitly given as

f1(q(0, t)) = 0, f2(q(l, t)) = 0, (3)

where f1(·) and f2(·) are given boundary functions.

Model discretization: By applying a first-order Kurganov-
Tadmor (KT) scheme (see Kurganov and Tadmor (2000))
to discretize the PDE (1), one obtains

Q̇i(t) = A1Q
i−1(t)−Ai2Qi(t) +A3Q

i+1(t), i = {1, ..., n},
(4)

where the spatial domain is discretized into n cells Gi =(
xi− 1

2
, xi+ 1

2

)
of length ∆x, with xi+ 1

2
= i∆x called the

ith cell interface and xi = (i − 1
2 )∆x marking the middle

point of this cell. The variable Qi(t) is an approximate
of the spatial average of the vector q(x, t) over Gi. Also,
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A1 = cl
2∆xI2 + 1

2∆xΨ, Ai2 = F (xi) + cl
∆xI2, A3 = cl

2∆xI2 −
1

2∆xΨ, with Im the (m×m) identity matrix.

Boundary condition treatment: Expanding (4) for i = 1
and i = n, one encounters dependencies on Q0 and
Qn+1. These variables are used as approximates of the
boundary conditions q(t, 0) and q(t, l), respectively. Taking
a characteristics-based approach similar to the one in
Fjelde and Karlsen (2002), one finally arrives at

Q0(t) =awW
0(t) + b

Jin(t, Q0
1)

2φp
,

Qn+1(t) =− awWn+1(t)− bJout(t, Q
n+1
1 )

2φp
,

(5)

where W 0(t) and Wn+1(t) are the solutions of

Ẇ 0 = −λW 0 − (L2F (x1)− λL2)Q1,

Ẇn+1 = −λWn+1 − (L1F (xn)− λL1)Qn,
(6)

and Jin and Jout are the the inlet and outlet mass flow
rates, respectively. These are determined from the bound-
ary conditions (3). Also, φp is the pipe cross sectional
area, λ = cl

∆x , L1 = 0.5 [ cl 1 ], L2 = 0.5 [−cl 1 ], aw =

[ 2/cl 0 ]
T

and b = [ 0 1 ]
T

.

Finally, by combining (4)-(6), one can write the hydraulics
model in a pipe in a state-space form as{

Q̇p =ApQp +Bpuu
p +Bpww

p,

vp =CpvQp +Dp
vuu

p +Dp
vww

p,
(7)

where the superscript (sometimes subscript) p refers to the

pipe, Qp =
[
W 0 (

Q1
)T

. . . (Qn)
T Wn+1

]T
∈ R2n+2 is

the state vector and

up =
Jin(t, vp1)

2φp
∈ R, wp =

Jout(t, v
p
2)

2φp
∈ R,

vp =[vp1 , v
p
2 ]T = [Q0

1, Q
n+1
1 ]T ∈ R2.

(8)

The variable up, imposed by f1(·) in (3), is the mass flow
rate (with a constant factor) at the inlet and it may be
assumed as an input to the system. Next, wp is a feedback
signal from the nonlinear term due to f2(·). The vector vp,
consisting of the densities at the inlet and outlet, provides
the inputs to the nonlinear term.

2.2 MPD modeling

The MPD system can be modeled by a series connection of
two pipe models of the form (7). The hydraulic dynamics
in the drillstring and in the annulus are both described by
(7), by changing sub/superscript p by d and a, respectively.
Next, we specify the system boundary conditions.

Boundary conditions: The first boundary equation im-
posed by the pump equation is given as

Jp(t)− φdqd2(0, t) = 0, (9)

where Jp is the pump mass flow rate. The second and
the third boundary equations describe the outlet of the
drillstring and the inlet of the annulus. Those are derived
using the bit equation and are as follows:

z(t)− φdqd2(l, t) = 0, z(t)− φaqa2 (0, t) = 0, (10)

where z(t) represents the mass flow rate through the bit
which is given by the nonlinear bit model

ż =

{
−β1z

2 − β2z + β3∆ρdh, for z > 0,

max(0,−β1z
2 − β2z + β3∆ρdh), for z = 0,

(11)

where ∆ρdh = qd1(l, t) − qa1 (0, t), and the parameters β1,
β2 and β3 are dependent on the well parameters and the
bit parameters Cd and An, which are the bit constant and
the equivalent bit nozzle area, respectively. To derive this
bit model, a control volume of a length of ∆l is taken over
the bit and an approach similar to the one in Kaasa et al.
(2012) is followed. The max(·) operator is used to model a
non-return value installed above the bit in the drillstring.
The reason for using this dynamical equation rather than
a static bit equation is to prevent a chattering in the inlet
boundary variables when the flow is close to zero.

The last boundary equation is given by the choke equation

Jc(q
a
2 (l, t))− kcclG(zc)fc (qa1 (l, t)) = 0, (12)

where Jc, kc, zc(t) and G(zc) are the choke mass flow
rate, the choke flow factor, the choke opening and the
choke characteristic, respectively. Also, fc(q

a
1 (l, t)) =

sgn(r)
√
|r|, where r = 2qa1 (l, t)(qa1 (l, t)− ρ0).

Finite-dimensional model: Note that if the drillstring
inclination is θ(x), then that of the annulus is −θ(l − x).
With this in mind and based on the explanation in the
beginning of Section 2.2, one may derive the model for an
MPD system to obtain a representation of the form

Σlin :

{
Ẋ = AX +Buu1 +BwW,
V = CvX +Dvuu1 +DvwW,

(13)

Σnl :

 ż =

{
−β1z

2 − β2z + β3ΓV ,for z > 0,

max(0,−β1z
2 − β2z + β3ΓV ),for z = 0,

W =Cz + h(V, u2),
(14)

where X =
[
QTd QTa

]T ∈ R2n+4, and z are the state
variables. Note that the number of cells (as used in
discretization) for the drillstring and for the annulus are

the same and equal to n. The vector V = [ V1 V2 V3 ]
T

=

[Γ2v
d, (va)

T
]T ∈ R3, with Γ2 = [ 0 1 ], contains the

fluid densities at the well bottom and choke, and W =[
wd ua wa

]T
. The exogenous inputs to the system are

u1 = ud =
Jp
2φd

, u2 =
kcclG(zc)

2φa
, (15)

and also

h(V, u2) = [ 0 0 u2fc(V3) ]
T
. (16)

In output-feedback control problems, the outputs of the
system, the BHP in this case, are to be available for
measurement. However, the measurements of the BHP
are communicated at a low rate, are usually delayed
and unreliable. Thus, we choose the choke density ρc
(convertible to pressure using (2)) as the output here,
which is to be well approximated by the reduced-order
model in Section 3. The BHP measurements can then be
used to update an estimator generating the setpoint for
the choke pressure. The choke density is denoted by V3,
thus

y = V3 = ΓyV, Γy = [ 01×2 1 ]
T
, (17)

where y ∈ R is the output.
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Fig. 2. A block diagram of the system in the presence of
the loop transformations.

2.3 Model reformulation

To facilitate later analysis, we will first transform the
model into a suitable form by performing two loop trans-
formations. In addition, assuming that z(t) > 0, the linear
part of the nonlinear dynamics (14) is merged into the
linear subsystem (13), allowing for rewriting the system
in a Lur’e-type form, composed of an interconnection of a
linear subsystem and a nonlinear static mapping. More-
over, most of the drilling time is spent on the drilling
ahead operation, during which the pump flow rate is kept
constant at some nominal value J∗p and the choke opening
only has small variations around a nominal value z∗c , to
compensate for transient pressure fluctuations. Thus, it
is reasonable to change the origin of the resulting Lur’e-
type system to an operating point X∗c = [X∗T , z∗]T and
denote the transformed system by Σc = (Σclin,Σ

c
nl), with

Σclin and Σcnl the linear subsystem and nonlinear map-
ping, respectively. Note that X∗c corresponds to the inputs

u∗1 =
J∗p
2φd and u∗2 =

kcclG(z∗c )
2φa . The value z∗c is designed such

that the resulting surface pressure is larger than the ref-
erence pressure p0 for normal drilling operations to avoid
a saturation in the choke opening. After performing the
loop transformations as illustrated in the block diagram in
Fig. 2 and a change of coordinates, as introduced above,
we obtain the Lur’e-type system

Σcslin :


˙̃Xc =AcX̃c +Bucũ1 +BwsW̃cs,

Ṽcs =CvsX̃c +Dvsuũ1 +DvswW̃cs,

ỹ =ΓysṼcs,

(18)

Σcsnl : W̃cs = Swh̃c(SvṼcs, ũ2), (19)

where Xc =
[
XT z

]T ∈ Rnc with nc = 4n+ 5, and Vc =

[ Vc1 Vc2 ]
T

= [ z V3 ]
T ∈ R2, Vcs = S−1

v Vc, Wcs = SwWc.
A tilde “˜” indicates the difference between a variable and
its operational value denoted by ∗, and

hc(Vc, u2) = h̄(Vc, u2)−HvVc, (20)

where h̄ =
[
V 2
c1 u2fc(Vc2)

]T
. Finally, Hv = diag(αb, αc),

Sv and Sw are related to the loop transformations seen in
Fig. 2 and are yet to be determined.

3. NONLINEAR MODEL ORDER REDUCTION

3.1 Model order reduction procedure

The nonlinear model (18) and (19), denoted by Σcs =
(Σcslin,Σ

cs
nl), is in the form of a feedback interconnection

of a high-order linear subsystem Σcslin and low-order non-
linear subsystem Σcsnl. This particular structure enables
us to reduce the model complexity by only reducing the
linear subsystem using existing MOR techniques for linear
systems, such as balanced singular perturbation (see Fer-
nando and Nicholson (1982); Liu and Anderson (1989)),
which preserves the steady-state response. This leads to a
reduced-order linear subsystem Σ̂cslin of the following form

Σ̂cslin :


˙̂
X̃c =Âc

ˆ̃Xc + B̂ucũ1 + B̂ws
ˆ̃W cs,

ˆ̃V cs =Ĉvs
ˆ̃Xc + D̂vsuũ1 + D̂vsw

ˆ̃W cs,

ˆ̃y =Γys
ˆ̃V cs,

(21)

where ˆ̃Xc ∈ Rk, k < nc, and the dimensions of the inputs
and outputs remain unchanged. Balancing-based MOR
methods preserve stability and minimality, and provide a
bound on the reduction error of the linear subsystem, such
that for the H∞-norm of the difference between Σcslin (with

Ṽcs as output) and Σ̂cslin, we have∥∥∥Σcslin − Σ̂cslin

∥∥∥
H∞
≤ εlin, εlin = 2

nc∑
j=k+1

σj , (22)

where σj is the jth Hankel singular value of Σcslin.

Finally, the interconnection of the original nonlinear Σcsnl
subsystem and the reduced linear subsystem Σ̂cslin leads to

the reduced-order nonlinear system Σ̂cs = (Σ̂cslin,Σ
cs
nl).

3.2 Properties of original and reduced-order systems

If a number of conditions hold, it can be guaranteed that
the described MOR technique preserves stability proper-
ties and provides a computable bound on the reduction
error in terms of the L2-induced system norm for the
reduced-order nonlinear system Σ̂cs. These will be stated
formally in form of a lemma and theorem in this section.

Two of the above-mentioned conditions are (see Besselink
et al. (2013)): 1) the linear subsystem Σcslin is asymptoti-
cally stable and 2) the small-gain condition

µswvγ
s
vw < 1, (23)

holds, with γsvw the (incremental) L2-gain of Σcslin corre-

sponding to W̃cs as input and Ṽcs as output, and µswv is
an upper bound for the incremental L2-gain of Σcsnl from

Ṽcs to W̃cs. This gain will be computed later.

Lemma 1. If Σcs satisfies all the aforementioned condi-
tions, then it has a bounded incremental L2 gain (from

input ũ = [ ũ1 ũ2 ]
T

to ỹ) with bound

γyu =
√

2 max
(
γsyu1

, γsyu2

)
. (24)

Moreover, the origin is locally asymptotically stable. Here,
Msg := 1− µswvγsvw is the small-gain margin, γsyu1

=
γyvγ

s
vu1

Msg
, γsyu2

=
γyvγ

s
vwµ

s
wu2

Msg
, γyv is the L2 gain from Ṽc

to ỹ, γsvu1
the incremental L2 gain from ũ1 to Ṽcs and

µswu2
is the L2 gain from ũ2 to W̃cs.

Theorem 1. If Σcs satisfies all the aforementioned condi-
tions, the feedback interconnection Σ̂cs = (Σ̂cslin,Σ

cs
nl) is

well-posed and Σ̂cslin is asymptotically stable, the following
statements hold:
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(1) The reduced-order system Σ̂cs has a bounded incre-
mental L2 gain and the origin is asymptotically stable
for ũ = 0 when

µswv(γ
s
vw + εlin) < 1, (25)

(2) Let (25) hold. Then, the output error ỹ − ˆ̃y = δỹ is
bounded as ‖δỹ‖2 ≤ ε‖ũ‖2, with ‖.‖2 denoting the L2

signal norm and

ε =
√

2
γsyvεlin

M̂sg

max (γ1, γ2) , (26)

where M̂sg := 1− µswv(γsvw + εlin), γ1 = 1 +
µs
wvγ

s
vu1

Msg
,

γ2 =
µs
wu2

Msg
and γsyv is the L2 gain from Ṽcs to ỹ.

Proof. The proof of Lemma 1 and Theorem 1 is based on
the results in Besselink et al. (2013).

3.3 Designing the loop transformations

Due to the square root in fc(·) and the second-degree
flow related term, the vector-function hc(·, ·) as in (20)
is Lipschitz only locally, implying that the small-gain
condition in (23) can hold only locally. This fact, along
with the assumption that z(t) > 0, provides motivation
for restricting our analysis to a particular region Ωh of the
input space of hc(·, ·) (and thus h̃c(·, ·)) defined as

Ωh :=
{
z, ρc, u2|zmin ≤ z ≤ zmax,
ρminc ≤ ρc ≤ ρmaxc , umin2 ≤ u2 ≤ umax2

}
,

(27)

where the superscripts “max” and “min” denote the
maximum and minimum values of a variable.

Now, the matrices Hv, Sw and Sv should be designed such
that the small-gain condition is the least conservative,
namely Msg is maximized in Ωh. Here, we take a two-
step approach which provides a heuristic for maximizing
Msg. In the first step, the matrix Hv is designed such that

µvw, the incremental L2 norm of h̃c(·, ·) from Ṽc to W̃c, is
minimized in Ωh. One may take (see Besselink (2012))

µvw = sup
Ωh

σ̄ (H(Vc, u2)) ,

where σ̄(.) is the maximum singular value and H =
∂h̄/∂Vc −Hv. As H(Vc, u2) is diagonal, µvw can be min-
imized by minimizing the supremum of each diagonal
element over Ωh. Also, µsvw may be computed as

µswv = sup
Ωh

σ̄ (SwH(Vc, u2)Sv) .

Next, noting that hc(., .) is a multi-input-multi-output
mapping, Sv and Sw are designed by solving an optimiza-
tion problem over Ωh with Msg as the cost function.

Remark 1. In the presented MOR approach, it has been
assumed that the models are completely known, while
MPD systems are highly uncertain. But, we project that
this model reduction approach is robust and will maintain
its performance to a certain extent in the presence of
uncertainties that satisfy some norm conditions.

Remark 2. As the small-gain conditions (23) and (25) hold
only locally, in order for the Lemma 1 and Theorem 1 to
be valid, it is necessary for both the systems Σcs and Σ̂cs

to be L∞ stable, at least locally, from ũ to Ṽc and ˆ̃Vc,
respectively. As both of these systems have asymptotically
stable origins, following Corollary 5.3 of Khalil (2014), it
can be shown that the systems are locally L∞ stable.

0 100 200 300 400 500 600 700
10-20

10-15

10-10

10-5

100

20 40

10-2

10-1

Fig. 3. The singular values σi of the linear subsystem Σcslin.

4. AN ILLUSTRATIVE CASE STUDY

To evaluate the accuracy of the reduced-order model ob-
tained by the procedure discussed in Section 3, simulations
are performed with the parameters listed in Table 1. The
nominal inputs are taken as J∗pump = 54 kg/s and z∗c = 0.3.
We choose the region Ωh, as in (27), to be bounded by
pminc = 3 bar, pmaxc = 32 bar (can be stated in terms of
ρc using (2)), zmin = 10 kg/s, zmax = 60 kg/s, zminc = 0.1
and zmaxc = 0.32 (convertible to u2 using (16)). With this
choice, the real part of each eigenvalue of Ac is smaller
than -0.1876, implying the asymptotic stability of Σcslin,
µswv = 2.051 and γsvw = 0.413 and, thus, µswvγ

s
vw = 0.847

can be achieved, thereby permitting the application of
the described nonlinear MOR procedure to our system. It
should be noted that µswv can be made significantly smaller
by increasing pminc by a few bars, as fc(ρc) has a high slope
for ρc close to ρ0.

The Hankel singular values of the high-order linear sub-
system are shown in Fig. 3. Clearly, a relatively fast decay
begins around j = 20. Here, we choose k = 41, for
which εlin = 0.0194 and the condition (25) holds with

M̂sg = 0.111. In Fig. 4, a comparison is performed between

the 2× 2 transfer function matrices Gsvw of Σcslin from W̃cs

to Ṽcs and Ĝsvw of Σ̂cslin from ˆ̃Wcs to ˆ̃Vcs. Clearly, at low
frequencies there is good match between the two linear
subsystems, and the resonance frequencies are also well
captured by the reduced subsystem.

Remark 3. The normal drilling operations are performed
so slowly that the high-frequency modes of the system
are seldomly exited. But, there are undesirable scenarios,
such as choke plugging and heave motion, that excite
these modes and cause transient and periodic pressure
fluctuations. Thus, for effective compensation of such
fluctuations, it is important that the hydraulics model
is able to capture the major resonance frequencies of the
system, which indeed approximate the wave propagation
phenomenon.

In time domain simulations, the choke opening is decreased
from its nominal value z∗c to zc = 0.15 with a step change

Table 1. The simulation parameters.

Par. Value Par. Value Par. Value

l 1817 m cl 745 m/s µm 0.04 kg/sm
θ(x) 61.7o ρ0 1800 kg/m3 Cd 0.8
φa 0.026 m2 p0 1 bar An 7.46 × 10−4 m2

φd 0.01 m2 kc 0.0032 ∆l 40 m
n 160 nc 645 g 9.81 m/s2
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Fig. 4. A comparison between the frequency responses of
Σcslin and Σ̂cslin from W̃cs to Ṽcs.
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Fig. 5. A time response comparison between M1 the
original model Σcs, M2 the reduced model Σ̂cs, M3
the model with n = 9 and M4 by Kaasa et al. (2012).

at t = 15 s, and the pump mass flow rate is reduced
to 50% at t = 35 s. With these extreme inputs that
indeed resemble a choke plugging scenario, a comparison
is performed between the original model Σcs (M1), the

reduced nonlinear model Σ̂cs (M2) and a model obtained
from performing a coarse discretization with n = 9 (M3).
Note that M3 has the same order as M2. The response
of the model presented in Kaasa et al. (2012), shown by
M4, is also added as it has a good steady-state accuracy.
The results are reported in Fig. 5. This figure shows that
the reduced-order model M2 gives a far more accurate
approximation compared to the discretized model M3 of
the same order, indicating the usefulness of MOR for
MPD systems. Moreover, M3 has a better performance
in preserving the fast dynamics of the system compared to
M4, but it suffers from inaccuracy in steady-state, while
M4 has a good steady-state performance.

5. CONCLUSION

A nonlinear model order reduction method has been pre-
sented for a managed pressure drilling system. By using a
high-resolution discretization scheme and a characteristics-
based method for handling the nonlinear boundary con-
ditions a new control-oriented hydraulics model has been

derived for the system. The resulting model can be decom-
posed into a feedback interconnection of a high-order linear
and low-order nonlinear subsystem, permitting a model
reduction procedure that guarantees preservation of key
system (stability) properties and provides a computable
reduction error bound in L2 norm under certain condi-
tions. It has been shown that this conditions hold only
locally, implying that the validity of the error bound and
preservation of the key properties is only guaranteed in
some part of the operating region. Simulations illustrate
the effectiveness of the presented model order reduction
approach for managed pressure drilling applications.
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