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Abstract: Despite a significant potential to improve industrial standards, practical applications
of production optimization are impeded by geological uncertainty. As a mean to handle the
associated financial risks, the oil literature has devised a range of ensemble-based strategies
that seek to optimize proper combinations of sample-estimated risk measures to balance the
opposing objectives of risk and reward. Many of the associated optimization problems are
naturally formulated in terms of multi-objective optimization (MOO). Ideally, MOO problems
should be solved by generating an approximation to the efficient frontier of optimal trade-
offs between risk and return. However, the large-scale nature of real-life oil reservoirs implies
that formation of the frontier often becomes computationally intractable in practice. To meet
this challenge, this paper introduces a generalized least squares (LS) approach that provides an
efficient and unified solution strategy for ensemble-based multi-objective optimization problems.
At its core, the LS method uses an a priori characterization of desirable trade-offs that allows
the method to focus on a single Pareto optimal point. Consequently, the LS approach avoids
the need to generate a representative of the efficient frontier. In turn, this significantly reduces
computational complexity compared to most MOO methods. As a result, the LS method poses
a practical alternative to conventional strategies when the efficient frontier is unknown and
computationally intractable to generate.

Keywords: Optimal control, Model-based control, Production control, Risk, Stochastic
modelling.

1. INTRODUCTION

In the oil literature, production optimization refers to the
use of nonlinear model predictive control (NMPC) to en-
hance the process of oil field water-flooding (Jansen et al.,
2009). In particular, by combining mathematical reservoir
models with advanced gradient-based optimization tools,
production optimization seeks to determine the set of well
configurations that maximize a performance index such
as the cumulative oil recovery or the financial measure
of life-cycle net present value (NPV). While numerical
case studies have demonstrated a significant potential of
production optimization to improve industrial practices,
commercialization of the technology remains challenged
by inherent geological uncertainties. To address the chal-
lenges of uncertainty, the oil literature has mainly consid-
ered ensemble-based methods (Van Essen et al. (2009)).
Such methods seek to represent geological uncertainty
by an ensemble of equally probable model realizations.
Effectively, the ensemble is used to generate a discrete
approximation to the continuous profit distribution. To
minimize risk and promote profits, the idea is to formulate
optimization problems that manipulate the discrete profit
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distribution to balance risk and reward according to ap-
propriate measures of risk. Prevalent ensemble-based risk
mitigation strategies include mean-variance optimization
(MVO) (Bailey et al. (2005), Capolei et al. (2015b)) and
conditional value-at-risk optimization (CVaRO) (Capolei
et al. (2015a), Siraj et al. (2015b), Codas et al. (2016)).
While the strategies differ by the way they quantify risk,
the associated optimization problems naturally fall into
the category of multi-objective optimization (MMO). In
addition, production optimization problems that seek to
balance short-term and long-term profits can also be clas-
sified in this way (Liu and Reynolds, 2015). This common
structure of production optimization problems allows for
a unified approach to their solution in terms of MOO
methods. Typically, MOO methods seek to generate a
representative of the Pareto front, i.e., the set of all optimal
trade-offs between risk and reward. By generating the
Pareto front, MOO methods present management with
the opportunity to locate the trade-off that provides the
best fit to the given application. As a drawback, the
large scale nature of production optimization makes the
approach computationally demanding to the point where
many practical applications become intractable. This issue
is particularly pronounced in the case of ensemble-based
methods that rely on a large number of reservoir simu-
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lations. Recently, Christiansen et al. (2017) introduced a
least squares (LS) method for efficient short-term versus
long-term optimization. The method specifically targets
problems where the Pareto front is computationally in-
tractable to generate. Concretely, the LS approach relies
on an a priori characterization of trade-offs. This allows
the method to narrow it’s focus to a single Pareto optimal
point of pre-specified attractive features. As a drawback,
the LS method assumes the reservoir description to be
exactly known, i.e., the problem formulation does not allow
for uncertain model parameters. To this end, this paper
generalizes the LS framework to account for geological
uncertainty. Effectively, this broadens applications of the
LS methodology to ensemble-based risk mitigation strate-
gies and provides a unified approach to the efficient and
reliable solution of the underlying class of MOO problems,
including MVO and CVaRO. Further, the computational
complexity of the generalized LS method scales linearly
with the number of objectives. This implies that the gen-
eralized LS approach provides a convenient and efficient
way to trade-off a large number of risk-related objectives
simultaneously. As a results, the LS method provides in-
creased flexibility compared to conventional a posteriori
methods, where the curse of dimensionality has limited
previous applications to bi-criteria objective functions. To
establish proof-of-concept, a numerical case study applies
the generalized LS method to efficiently solve a mean-
variance problem for a 2D synthetic black-oil reservoir with
an ensemble of 10 permeability realizations. The results
demonstrate the ability of the generalized LS method to
efficiently trade-off risk and reward at significantly reduced
computational cost relative to a conventional bi-criteria
MVO approach.
The paper is organized as follows. Section 2 introduces
ensemble-based oil production optimization. Section 3 de-
scribes risk mitigation in the context of multi-objective
optimization and Section 4 presents the generalized LS
method. Numerical results are presented in Section 5 and
conclusions are made in Section 6.

2. OIL PRODUCTION OPTIMIZATION

Life-cycle oil production optimization seeks to enhance the
recovery stage of oil field water-flooding by solution of
an optimal control problem (Brouwer and Jansen, 2004;
Sarma et al., 2005; Nævdal et al., 2006; Foss and Jensen,
2011; Völcker et al., 2011; Capolei et al., 2013):

max
u∈U

ψ(u; θ) (1)

For a specific set of geological and petrophysical model
parameters, θ ∈ Rn, the goal is to determine the optimal
well settings, u ∈ U , that maximize the cumulative NPV,
ψ, defined by

ψ(u; θ) =

N−1∑
k=0

[∑
i∈P

(rgqg,i + roqo,i − rwpqw,i)

−
∑
l∈I

rwiqw,l + rgiqg,l

]
∆tk

(2)

Here ro, rg, rwp, rgi and rwi denote the gas price, the
oil price, the water separation cost, the gas injection cost
and the water injection cost, respectively; qg,i, qw,i and
qo,i are the volumetric gas, water and oil flow rates at
producer i; qw,l and qg,l are the volumetric well injection

rates at injector l; N is the number of control steps and
∆tk = tk+1 − tk denotes the length of the time step. Well
flow rates are computed using the Peaceman well model
(Peaceman, 1983). For each time-step, tk, the state-space
variables, xk = x(tk), denote reservoir pressures and fluid
saturations whereas uk = u(tk) represents a zero-order-
hold parametrization of the well controls. The states xk are
computed by a black-oil model based on mass conservation
and Darcy’s law for porous media. Relative permeabilities
are based on tables that mimic empirical data. See e.g.
Aziz and Settari (1979); Chen et al. (2006); Chen (2007).

2.1 Production optimization under uncertainty

Simulation-based studies show that production optimiza-
tion has a significant potential to improve real-world dom-
inating practices. However, the transition to industrial ap-
plications relies on proper mathematical treatment of the
largely unknown geological features of offshore oil fields. In
particular, to be of practical relevance, the optimal control
problem (1) must account for geological uncertainty in the
model parameters, θ ∈ Rn. To this end, it has become com-
mon practice to use ensemble-based strategies. Ensemble-
based methods seek to represent geological uncertainty by
a collection of model realizations that all fit the available
geological data equally well:

θnd = {θ1, θ2, ..., θnd} = {θi}ndi=1. (3)

To quantify risk, ensemble-based methods approximate
the continuous NPV probability distribution by the dis-
crete set of profit realizations

ψnd = {ψi}ndi=1, where ψi = ψ(u; θi), 1 ≤ i ≤ nd. (4)

For a given operating profile, u ∈ U , the set of discrete
profits (4) provides a complete picture of how revenue is
distributed over the range of model realizations. Using this
information, ensemble-based methods seek to mitigate risk
by reducing the probability of low profit outcomes. In prac-
tice, this is accomplished by minimizing an appropriate
risk measure, R : ψnd → R :

min
u∈U

R(ψ(u; θnd)). (5)

In the oil literature, widely used risk measures, R, include
expected return (E) (Van Essen et al., 2009), the profit
variance (V) (Capolei et al., 2015b)) and Conditional
value-at-risk (Cα) (Siraj et al., 2015b) :

E := − 1

nd

nd∑
i=1

ψi, (6)

V :=
1

nd − 1

nd∑
i=1

(ψi − E)2, (7)

Cα := − 1

nα

nα∑
i=1

ψ̃i. (8)

Each risk measure provides a quantification of risk by
capturing different aspects of the discrete profit distribu-
tion, ψnd . In particular, E aims to promote high profits by
maximizing the mean value whereas V seeks to localize the
distribution to avoid volatility and large profit deviations.
In turn, Cα targets the tail of the distribution by maxi-
mizing the expected return over the α · 100% lowest profit
realizations, {ψ̃i}nαi=1, for a given α ∈ (0, 1). See Capolei
et al. (2015a) for a comprehensive survey on risk measures
in oil production optimization.
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Fig. 1. Illustrative Pareto front of optimal trade-offs in the
case of two objectives, e.g. risk and reward.

3. ENSEMBLE-BASED MULTI-OBJECTIVE
OPTIMIZATION

To provide a proper quantification of risk, it is often neces-
sary to include multiple features of the discrete profit dis-
tribution, ψnd . To this end, many ensemble-based methods
seek to optimize appropriate combinations of the funda-
mental risk measures (6)-(8). As a challenge, the individual
risk-related objectives are often in mutual conflict. For
example, the desire to increase returns are often bound to
higher risks and vice versa. Consequently, many ensemble-
based strategies, including MVO and CVaRO, are natu-
rally formulated as multi-objective optimization problems
that take the general form

min
u∈U

f(u) = (R1(u),R2(u), ...,Rm(u))
T
. (9)

Since the individual objectives are in mutual conflict,
there does not exists a single optimal operating profile,
u ∈ U , that simultaneously minimizes all components of
the objective vector, f. Instead, an optimal solution to
(9) is characterized by the property that no objective,
Ri, can be further minimized without increasing at least
one other objective, Rj . Such a solution is said to be
a Pareto optimal trade-off (Pareto, 1971). In practice,
there is typically an infinite number of optimal trade-
offs. Together they constitute the Pareto optimal set, O.
Each element u ∈ O gives rise to a different optimal risk
scenario that, from a mathematical point of view, provides
a satisfactory solution to the risk mitigation problem (9).
The goal of a posteriori MOO methods is to generate a
representative collection of these trade-offs in order for
management to decide which scenario fits the application
the best. In particular, a posteriori MOO methods seek to
generate an approximation to the Pareto front of optimal
trade-offs:

F = {f(u) = (R1(u),R2(u), ...,Rm(u)) | u ∈ O}. (10)

In the general case of m objectives, the Pareto front defines
a hyper-surface in the objective space. Fig. 1 illustrates
the Pareto front in the concrete case of two objectives.
For a more elaborate introduction to multi-objective oil
production optimization, see e.g. Liu and Reynolds (2015);
Christiansen et al. (2017).

Remark 1. In addition to a posteriori methods, the oil lit-
erature has proposed a number of a priori MOO methods,
where only a single trade-off is generated (Van Essen et al.,
2011; Chen et al., 2012; Fonseca et al., 2014; Siraj et al.,

2015a). For a discussion on these methods in the context
of multi-objective optimization, see e.g. Christiansen et al.
(2017).

3.1 Multi-objective risk mitigation by weighted sums

In the oil literature, the weighted sum method (WS) repre-
sents one of the most widely used a posteriori MOO meth-
ods. To approximate the Pareto front, the WS method
reformulates the MOOP as a sequence of single objective
optimization problems by assigning a non-negative weight,
wi, to each objective, Ri, such as to minimize the wighted
sum of objectives

min
u∈U

m∑
i=1

wiRi(ψ(u; θnd)). (11)

Each choice of positive weights, {wi}mi=1, leads to a Pareto
optimal trade-off (Miettinen (1999), Thm. 3.1.2). Conse-
quently, by iterating over different weight constellations, it
is possible to generate a representative of the efficient fron-
tier. As a drawback, the large scale nature of oil production
optimization makes the need for repeated optimizations
time-consuming and computationally demanding. Further,
it is a non-trivial task to determine the weights, {wi}mi=1,
that provide a proper representation of the frontier. Ulti-
mately, these computational challenges prevent industrial
applications.

Example 2. Mean-variance optimization (MVO) (Capolei
et al., 2015b) uses the WS method to locate the optimal
balance between the objectives of risk, V, and reward,
E, by solving a sequence of m bi-criteria optimization
problems for different choices of the weight parameter, λi :

max
u∈U

λiE(ψ(u; θnd))− (1− λi)V(ψ(u; θnd)), 1 ≤ i ≤ m.
(12)

Each iteration of the optimization algorithm relies on
nd reservoir simulations to calculate E(ψ(u; θnd) and
V(ψ(u; θnd)). The highly non-linear nature of oil produc-
tion optimization implies that iteration counts usually ex-
ceed 100. Hence, it is not uncommon that ensemble-based
risk mitigation strategies like MVO require more than 100·
nd ·m reservoir simulations to generate a representation of
the Pareto front.

4. A GENERALIZED LEAST SQUARES APPROACH

To meet the computational challenges of a posteriori MOO
methods, the following introduces a new least squares
(LS) approach for efficient risk-related multi-objective
decision-making in oil production optimization. The LS
method extends the work of Christiansen et al. (2017) to
account for uncertainty in the model parameters, θ ∈ Rn.
In this way, the LS approach provides a unified and
computationally attractive approach to the solution of
multi-objective ensemble-based risk mitigation problems.

4.1 Characterization of desirable Pareto points

Ideally, a posteriori methods should be used to generate
a representative of the Pareto front to support informed
decision making. However, for large-scale applications, the
Pareto front is often computationally unavailable. This
poses the natural question of how to preselect desirable
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Variance

Return

Fig. 2. Illustration of the key idea behind the LS method
and the characterization of desirable trade-offs. By
minimizing the Euclidian distance to the utopian risk
scenario, the LS method locates the trade-off at the
bend of the frontier (?). By moving towards the bend,
from � to ∆, the LS method properly balances risk
and reward by promoting each objectives as much
as possible without compromising the other in the
process.

Pareto points without explicit knowledge of the efficient
frontier. Christiansen et al. (2017) have recently proposed
an answer to this question using an a priori characteriza-
tion of desirable Pareto points in terms of the utopian risk
scenario:

Definition 3. The utopian risk scenario is defined as the
vector R∗ := (R∗1,R∗2, ...,R∗m), where R∗i , 1 ≤ i ≤ m
denotes the solution to the optimization problem

min
u∈U

Ri(ψ(u; θnd)). (13)

The utopian risk scenario serves as a natural mean to
characterize desirable trade-offs. The key idea is to favor
Pareto points that remain close to the utopian profit
scenario as measured in terms of deviations from the ideal,
R∗ :

∆Ri := ψ∗ − ψi, i ∈ {1, 2, ...,m}. (14)

In particular, a Pareto point is considered desirable if it
remains close to the utopian risk scenario in the sense of
least squares:

Definition 4. The Pareto point Ψ = (R1,R2, ...,Rm) is
considered preferable to the Pareto point % = (ρ1, ρ2, ..., ρm),
provided that

m∑
i=1

(Ri −R∗i )2 ≤
m∑
i=1

(ρi −R∗i )2, (15)

where R∗ = (R∗1,R∗2, ...,R∗m) denotes the utopian risk
scenario. A Pareto point, P, that is preferable to all other
Pareto points is considered optimal.

In essence, the classification of Definition 4 ensures that
desirable optimal Pareto points only deviate slightly from
the utopian risk scenario as measured by the Euclidian
distance. In this way, the classification screens out trade-
offs where a given objective, Ri, is severely compromised
at the expense of promoting others. For example, the
classification naturally disregards the unattractive trade-
offs that only favor high profits and neglect the associated
risks. As a result, the classification narrows the search to

Fig. 3. Well setup and permeability field.

trade-offs that provide a proper balance between risk and
reward. Fig. 2 illustrates the key idea.

4.2 The LS optimization problem

To locate desirable trade-offs, P, this paper introduces the
generalized least-squares approach:

min
u∈U

ψLS =
1

2

m∑
i=1

(Ri(ψ(u; θnd))−R∗i )2. (16)

The LS method (16) is guaranteed to locate a (local)
Pareto optimal solution (Miettinen (1999), Thm. 2.1.1).
By design, this Pareto optimal trade-off minimizes the
Euclidian distance to the utopian risk scenario. In this way,
the LS method generates the optimal trade-off that in-
creases each objective as much as possible without severely
compromising other objectives in the process. As a result,
the method obtains a proper balance between risk and
reward without having to generate the efficient frontier.
Further, as opposed to a posteriori methods, the computa-
tional complexity of the LS method scales linearly with the
number of objectives. Altogether this makes the approach
a computationally attractive alternative to conventional
MOO methods in situations where the efficient frontier is
unavailable.

5. NUMERICAL RESULTS

To demonstrate the LS method’s ability to properly bal-
ance the objectives of risk and reward, the following case
study uses (16) to solve the mean-variance multi-objective
optimization problem

min
u∈U

f(u) = [−E(ψ(u; θnd)),V(ψ(u; θnd))] . (17)

As a base case reference, the LS solution is compared to
the Pareto front generated by a bi-criteria MVO approach
(12) with weights {λi}10i=0 = { i10}. In all computations,

the variance is scaled by wv := 10−7 to ensure comparable
magnitudes of the objectives.

5.1 Case study description

The case study uses a 2D synthetic black oil reservoir
model of dimensions 800 m × 1000 m × 10 m, which by
spatial discretization has been divided into 80×100×1 cell
blocks. To represent geological uncertainty, the case study
uses an ensemble of 10 channeled isotropic permeability
fields, where the permeability ranges between 0-1200mD.
The reservoir is produced for 3600 days under water
flooding conditions. It contains six water injectors and
six producers. All wells are horizontal. Fig. 3 shows the
well setup. The bhps of the producer wells are kept fixed
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Table 1. Reservoir data.

description symbol value Metric

physical dim (x, y, y) (800, 1000, 10) [m]
grid-cell dim (∆x,∆y,∆z) (10, 10, 10) [m]
porosity, uniform φ 0.2 -
water comp cw 1.45e-5 [bar−1]
rock comp cr 4.35E-10 [bar−1]
capillary pressure Pc 0 [bar]
pore volume Vpore 1.6e6 [m3]
oil in place Voip 1.28e6 [m3]
permeability range (kx, ky) [0, 1200] [mD]
bubble-point pressure Pb 153.67 [bar]
datum press Pr 130.00 [bar]
datum depth dr 1500.00 [m]
oil water contact OWC 2000.00 [m]
gas-oil contact GOC 1000.00 [m]
initial water saturation Swi 0.2 -

at 125 bar and the water injection rates are subject to
control with a sample time of 30 days. The water injection
rates are bound to be in the interval [0.1, 250] m3/day,
with a rate of movement constraint of ±30m3/day. The
total injection rate is constrained to a maximum of 750
m3/day. The initial water injection rates, uinit, are set to
62.5 m3/day for each well. All simulations are performed
using the Eclipse E300 black oil reservoir simulator. Table
1 shows petrophysical simulation parameters. Solutions to
the optimization problems, (12) and (16), are found by
MATLABs build-in function fmincon with an interior-
point algorithm and a tolerance of ε = 10−8. The current
best, but non-optimal iterate, is returned if the iteration
count exceeds 100 and the objective function violates
sufficient decrease conditions. Gradients required by the
optimization algorithm are computed efficiently by the
adjoint method (Jørgensen, 2007; Völcker et al., 2011;
Capolei et al., 2012a,b; Jansen, 2011; Sarma et al., 2005;
Suwartadi et al., 2012).

5.2 Comparison of the LS method and MVO

Fig. 4 compares the LS solution to the Pareto front
representative generated by MVO. Table 2 shows the
corresponding Pareto optimal values of expected return
(E) and standard deviation (S). The results show that
the LS method manages to locate the trade-off at the
bend of the efficient frontier. Compared to the extreme
MVO case of λ := 1, the LS method produces a trade-
off that maintains a high expected return, while reducing
the risk of profit loss considerably. In particular, expected
return is reduced by just 1.5 million USD, while the
the standard deviation is reduced by approximately 3
million USD. Also, compared to the extreme MVO case
of λ := 0, the LS method manages to drastically increase
expected return from 76.1 million USD to 102.6 million
USD. The cost is a slight increase in the standard deviation
of approximately 3.2 million USD. Overall, the results
show that the LS method manages to locate a trade-off
that properly balances the objectives of risk and reward,
without any knowledge of the shape of the efficient frontier.
In turn, this makes the LS method a computational
attractive alternative to MVO. In particular, Table 2
compares MVO and the LS method in terms of equivalent
reservoir simulations required to meet the stopping criteria
of fmincon. While MVO requires a total of 17150 reservoir
simulations, the LS method needs only perform 3090. This
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Fig. 4. Pareto front representative computed by MVO
compared to the LS optimal trade-off. The Pareto
optimal points are displayed in terms of expected
return (E) and standard deviation (S).

Table 2. Comparison of MVO and the LS method.

Strategy E [million USD] S [million USD] # Reservoir simulations

MVO (WS) - - 17150
λ = 1 104.1 9.53 1120
λ = 0.9 104.4 9.28 3550
λ = 0.8 103.9 8.13 2140
λ = 0.7 104 7.73 210
λ = 0.6 103.5 7.33 1930
λ = 0.5 103.1 6.90 1540
λ = 0.4 102.8 6.65 610
λ = 0.3 101.5 6.35 2110
λ = 0.2 98.7 5.88 1370
λ = 0.1 91.9 4.84 1510
λ = 0 76.1 3.36 1060

LS 102.6 6.54 3090

amounts to a reduction of the computational effort by
approximately 82 %.

6. CONCLUSION

This paper has introduced a generalized least squares
method for efficient and reliable ensemble-based multi-
objective optimization. The LS approach extends the work
of Christiansen et al. (2017) to handle geological uncertain-
ties and it is designed specifically for situations where the
efficient frontier is computationally intractable to gener-
ate. The extension paves the way for a unified approach
to large-scale risk mitigation strategies in oil production
optimization and serves a convenient mean to efficiently
overcome the computational challenges of ensemble-based
multi-objective optimization. In particular, the computa-
tional complexity of the LS approach scales linearly with
the number of objectives. This allows for optimization of
multiple risk-related objectives, whereas previous applica-
tions have been limited to bi-criteria problems. Using 10
realizations of a 2D synthetic black oil reservoir, numerical
results have demonstrated the LS method’s ability to prop-
erly balance risk and reward by solving a mean-variance
optimization problem at significantly reduced computa-
tional effort relative to a conventional bi-criteria MVO
approach. In this regard, the main computational work-
load tied to repeated reservoir simulations was reduced
by approximately 82 %. Future work seeks to use this
increased computationally flexibility of the LS method to
investigate the potential benefits on the balance between
risk and reward that comes from combining more than two
risk-related objectives.
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