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Abstract: In this paper, we present a software tool for oil production optimization. The software
combines the simulation power of a commercial black-oil reservoir simulator with adjoint-
gradient capability (Eclipse E300) and state-of-the-art software for constrained optimization
(Matlab). The software enables deterministic and ensemble-based optimization strategies for
black-oil reservoir flow models and compositional reservoir flow models. The software implements
a number of ensemble-based optimization strategies such as the robust optimization, the
mean-variance optimization, and the conditional value at risk optimization. Consequently, the
software constitutes a powerful tool to assist and guide decision making in the real-life reservoir
management process. In this paper, we present the workflow and numerical results for mean-
variance optimization of a synthetic 2-dimensional black-oil reservoir using water flooding.
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1. INTRODUCTION

In an unstable low price market with strict environmen-
tal regulations, implementation of life-cycle production
optimization methods for reservoir management receives
growing interest from the industry (Hanea et al., 2016;
Leeuwenburgh et al., 2016; Jansen et al., 2009; Hou et al.,
2015; Oliveira and Reynolds, 2015). To increase profits and
mitigate risk in production of maturing fields, the industry
calls for recovery methods that increases production with
low risk and little environmental impact. Oil production
optimization of water flooded oil fields can prove to be
such a method (Brouwer et al., 2004; van Essen et al.,
2009; Foss, 2012; Rahmawati et al., 2012; Sarma et al.,
2008; Wang et al., 2009; Völcker et al., 2011; Capolei
et al., 2013). Many existing fields are in the second or
third stage of recovery, where the infrastructure for water
flooding is already in-place. Thus, the cost of incorpo-
rating production optimization in the operating strategy
decisions is relatively low. Ensemble-based methods have
been a focal point in the literature to account for the
inherent geological uncertainty of the subsurface (van Es-
sen et al., 2009; Peters et al., 2010). Black-oil models are
widely used throughout the industry for simulation and
prediction. These simulations and predictions serve as a
decision support tool for the management. To further as-
sist the management in making optimal decisions requires
that the simulation and predictions are combined with
optimization methods. Consequently, routinely appilcation
of oil production optimization methods in the industry
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requires that research efforts are extended from simple
small-scale two-phase reservoir flow models to real size
reservoir geometry as well as black-oil flow models. The
complexity and size of typical industry reservoir models
necessitate user-friendly, fast, reliable and robust reservoir
simulators. In this paper, we combine ensemble-based op-
timization methods, a black-oil reservoir flow model, and
a commercial reservoir simulation tool to enable realistic
industrial scale production optimization.

Oil production optimization research as described in the
literature is for a large part limited to two-phase immisci-
ble flow in synthetic reservoir models, simulated in various
open source, research purpose or in-house reservoir simu-
lators (Hou et al., 2015). Through years of development
and use, commercial simulators have obtained flexibility,
computational speed, and robustness. For this reason,
most oil companies creates simulations models of their
reservoirs in an industry standard commercial simulator.
Chen et al. (2010) and Asadollahi and Naevdal (2009) both
applied gradient-based optimization on the synthetic two-
phase Brugge field (Peters et al., 2010) using a commercial
reservoir simulator (E300). Demonstration of ensemble-
based optimization methods on realistic reservoirs sim-
ulated with black-oil flow models will help to bring the
research closer to a point where the industry is willing to
implement such methods into the reservoir management
workflow. The large number of simulations required in
ensemble-based optimization methods necessitates the use
of gradient-based optimization for the methods to be com-
putationally feasible. This implies that ensemble-based
production optimization for an industry scale reservoir is
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only practically feasible, if the reservoir simulator is able
to compute the gradient, e.g. by the adjoint method.

In this paper, we present a workflow that combines the ro-
bustness, simulation power and adjoint capability of a well-
established commercial reservoir simulator (Schlumberger
E300) and state-of-the-art optimization algorithms (Mat-
lab) to provide a robust gradient-based optimization tool
(RESOPT). The optimization strategies implemented in
the software tool are the ensemble-based methods: robust
optimization, mean-variance optimization, and conditional
value at risk optimization. In this paper, we only consider
the mean-variance optimization method. This software
integration enables reservoir engineers to routinely use ex-
isting realistic black-oil reservoir flow models implemented
in Eclipse for ensemble-based production optimization.

The structure of the paper is as follows. Section 2 describes
the black-oil flow-model, the net present value objective,
and the optimal control problem to be solved. Section 3
describes the ensemble-based mean-variance optimization
problem. The workflow in the production optimization
software tool is described in Section 4. Section 5 presents a
case study of a mean-variance optimization of a synthetic
2-dimensional black-oil reservoir. Conclusions are provided
in section 6.

2. RESERVOIR SIMULATOR

In this section, we state the black-oil model equations for
flow in porous media and the net present value objective
function. The aim is not to give a detailed description
of any specific numerical implementation of the black-oil
model, but to give an outline of the mathematical features
a reservoir simulator should implement to be suited for
computationally efficient production optimization. Aziz
and Durlofsky (2005) and Chen et al. (2006) provide a
thorough description of the black-oil model.

2.1 Black-oil model for flow in porous media

The basic black-oil model for live oil and dry gas can
be derived from the general multiphase flow model using
the following assumptions about the fluid mixture. 1) The
mixture consists of water (W), oil (O), and gas (G). 2) The
mixture has a water phase (w), an oil phase (o), and a gas
phase (g). 3) The water and oil components exists only
in their corresponding phases. The gas component exists
both in the gas phase and in the oil phase.

The black-oil mass-balance differential equations are

∂

∂t
Cβ = −∇ ·Nβ +Qβ , β ∈ {W,O,G}. (1)

For each phase, the concentrations, fluxes, and source/sink
terms are given by: CW = φρwSw, NW = ρwuw, QW =
ρwqWs, CO = φρOoSo, NO = ρOouo, QO = ρoqOs,
CG = φ (ρGoSo + ρgSg), NG = ρGouo + ρgug, QG =
ρgqGs. φ denotes the porosity of the porous media. The
saturation, density and Darcy velocity of a phase, α ∈
{w, o, g}, are denoted by Sα, ρα, and uα, respectively.
qβs denotes the component surface flow rates. In addition,
phase equilibrium conditions determines the distribution
of the gas component (G) between the gas phase (g) and
the oil phase (o). Furthermore, the saturations of the

phases (Sw, So, Sg) are related by the volume constraint
Sw + So + Sg = 1. The pressures of the different phases
(Pw, Po, Pg) are related by the capilary pressures, Pcow =
Po − Pw and Pcgo = Pg − Po.

2.2 Discretization

Most reservoir simulators discretize the flow equations
in space by a finite-volume method and in time by the
implicit Euler method. We denote the state vector as
x(t) ∈ Rnx , the vector of manipulated variables as u(t) ∈
Rnu , and the vector of geological parameters as θ. u(t) is
discretized by a zero-order-hold defined by u(t) = uk, tk ≤
t ≤ tk+1, k = 0, . . . , N −1, where tN = tf is the final time.

After spatial and temporal discretization, we write the
black-oil model as the system of nonlinear equations

Rk = R (xk+1, xk, uk; θ) = 0, k = 0, 1, . . . , N − 1. (2)

Using a Matlab-like notation we introduce the vectors
x̄ = (x1;x2; . . . ;xN ), R̄ = (R0;R1; . . . ;RN−1), and ū =
(u0;u1; . . . ;uN−1). This allows us to express the residual
equations (2) compactly as

R̄ (x̄, ū, x0; θ) = 0. (3)

2.3 Net present value

The net present value over the life time of an oil reservoir
can be defined as a function, Φ, of the states, x̄, the
operating trajectory, ū, the initial state, x0, and the
the geological parameters, θ. The net present value is in
discrete time written as

Φ (x̄, ū, x0; θ) =

N−1∑
k=0

Jk (xk+1, uk; θ) , (4)

where the discounted net present value, Jk, for the k‘th
time interval is given by

Jk =
∆tk

(1 + d)tk+1/tτ

[
roqOs,k+1 + rgqGs,k+1

− (rwqWs,k+1 + rw,injqw,inj,k+1)

]
. (5)

∆tk, is the length of the k’th time interval, d is the annual
discount factor, tτ is the discount time interval. ro and
rg are the sale prices for oil and gas. rw is the water
production cost and rw,inj is the water injection cost. The
corresponding flow rates for oil, gas, water, and water
injection are denoted as, qOs, qGs, qWs, qw,inj.

2.4 Optimal control problem

The discrete-time constrained optimal control problem for
production optimization is given by (Capolei et al., 2012)

max
ū∈U

ψ = ψ (ū;x0, θ) , (6)

where the objective function is

ψ (ū;x0, θ) =

{
Φ (x̄, ū, x0; θ) : R̄(x̄, ū, x0; θ) = 0

}
. (7)

In this paper, only linear constraints on the input are
considered. The constraints are lower/upper bounds on
controls, rate of movement constraints on controls to
prevent ‘large‘ changes in rates/bhp‘s, and upper/lower
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bounds on total injection rates in each time step. The
constraints are written as U = {ū : ūmin ≤ ū ≤
ūmax, ∆ūmin ≤ ∆ū ≤ ∆ūmax, bl ≤ Āū ≤ bu}.

2.5 Black-box reservoir simulator

In this paper, we introduce an optimization workflow that
is not reliant on any specific formulation nor solution
method of the black-oil flow equations (1). Accordingly, we
treat the reservoir simulator as a black-box function. To be
suited for production optimization, a reservoir simulator
must satisfy the following requirements. Given the initial
state, x0, an operating profile, ū, and a geological realiza-
tion vector, θ, it must at all subsequent time-steps return
the states, x̄, the net present value, ψ, and the gradient of
the net present value with respect to the controls, ∇ūψ.
We denote this black-box simulation function, S, as

[x̄, ψ,∇ūψ] = S(ū;x0, θ). (8)

3. ENSEMBLE-BASED OPTIMIZATION

In this section, we describe the ensemble-based mean-
variance optimization strategy for the net present value
of a reservoir under geological uncertainty. The ensemble-
based mean-variance optimization strategy optimizes a bi-
criterion objective function consisting of a convex combi-
nation of the mean and the variance of the net present
value.

3.1 Mean-variance optimization

In ensemble-based methods, the idea is to represent the un-
certainty associated with the geological parameters in an
ensemble of equally probable realizations, θnθ = {θi}nθi=1.
The corresponding ensemble of net present values for a
given initial condition, x0, and operating profile, ū, is
{ψi}nθi=1, where ψi = ψ (ū;x0, θi).

The mean-variance optimization strategy aims to com-
bine the conflicting objectives of increasing the mean net
present value while lowering the associated risk measured
as the variance of the net present value. The mean-variance
optimization problem is

max
ū∈U

ψMVO (ū;x0, θ
nθ ) , (9)

where the objective function,

ψMVO = λψRO − (1− λ)ψσ2 , (10)

is a convex combination of the mean, ψRO, and the
variance, ψσ2 , for the trade-off parameter, λ ∈ [0, 1]. The
mean, ψRO, and the variance, ψσ2 , are computed as their
ensemble sample estimates:

ψRO =
1

nθ

nθ∑
i=1

ψi, (11a)

ψσ2 =
1

nθ − 1

nθ∑
i=1

(
ψi − ψRO

)2
. (11b)

The gradient of the mean-variance objective (10) is given
as a combination of the gradients of the individual net
present value ensemble members, ∇ūψi :

∇ukψMVO = λ∇ukψRO − (1− λ)∇ukψσ2 , (12a)

∇ukψRO =
1

nθ

nθ∑
i=1

∇ukψi, (12b)

∇ukψσ2 =
2

nθ − 1

nθ∑
i=1

(ψi − ψRO)∇ukψi. (12c)

This implies that the objective, ψMVO, and the gradient,
∇ūψMVO, may be computed by computing the objective,
ψi, and the gradient, ∇ūψi, for each ensemble member,
i.e. {ψi,∇ūψi}nθi=1. These computations are conducted in
parallel by the reservoir simulator, i.e. [x̄i, ψi,∇ūψi] =
S(ū;x0, θ

i) for i = 1, 2, . . . , nθ.

4. WORKFLOW

In this section, we outline the workflow for RESOPT. RE-
SOPT is a workflow management tool for production opti-
mization that integrates Eclipse (E300) and Matlab. The
Eclipse file-format is the base of the software integration.
Matlab manages the data processing and communication
between the optimizer and the external simulator. The
optimizer is fmincon from Matlab’s optimization toolbox.
Eclipse E300 is used as the reservoir simulator because it
is well-established and can compute the gradients using
the adjoint method.

4.1 Overview of workflow

Fig. 1 illustrates the workflow in the RESOPT soft-
ware. The parameters defining the optimization problem
are supplied by the user in the script defineOptModel
that follows a specific template. The production opti-
mization computations are started from the driver script
optimizeModel. This script calls defineOptModel to col-
lect the user-defined parameters and passes them to
the optimizer, fmincon. The optimizer calls the function
runOptimizationStrategy that manages the communi-
cation with the external simulator through the function
runModel. runOptimizationStrategy calls the simulator
with a given production strategy, ū, and a given realization
of the parameters, θi, for all realizations in the ensemble,
i = 1, 2, . . . , nθ. The reservoir simulator computes and
return the states, x̄, the net present value, ψi, and the gra-
dients, ∇ūψi. For a cluster of computers, these calls to the
simulator may be conducted in parallel. We note that for
ensemble-based strategies on industry-scaled reservoirs,
access to a high-performance computing cluster is essen-
tial for the optimization to be computationally tractable.
Given {ψi,∇ūψi}nθi=1, runOptimizationStrategy com-
putes the objective value and the gradients of the chosen
strategy, e.g. ψMVO and ∇ūψMVO, and returns these
values to the optimizer, fmincon. Based on the returned
information, the optimizer checks for convergence. If ū is
not optimal, the optimizer computes a new iterate, ū. The
procedure is repeated until the optimizer has converged to
a set of optimal controls, ū .

After convergence, the software saves all iteration data
in a folder, together with the optimal simulation results
for each member of the ensemble. To enable the reservoir
engineer to monitor the optimization process, a dashboard
displays relevant optimization and production data from
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Fig. 1. Flowchart showing the workflow in the RESOPT optimization software.

the simulation. The controls, ū, and the gradients of
the objective, ∇ūψ, are divided between injectors and
producers. At each optimization iteration, the objective
function value, ψ, is appended in the dashboard. Also
the controls, the gradients, and the net present value are
updated along with selected production data. The selected
data can be any type of time dependent results based on
output from the simulation.

4.2 User-defined optimization parameters

The parameters stated in defineOptModel are divided
into two main types, namely model parameters (see Table
2) and optimization parameters (see Table 3). The opti-
mization parameters control the optimizer, e.g. the choice
of optimization algorithm, the convergence tolerances, the
maximum number of iterations, etc. The model parameters
define the optimization problem, e.g. the number and
the length of control time-steps, the choice of controlled
parameters, the starting guess for the controls, the con-
straints on controls, the choice of optimization strategy,
the size of the ensemble, the fluid prices, the discount
factor, the scaling, etc.

5. CASE STUDY

In this section, we present a case study that demonstrates
the use of the RESOPT optimization tool. The case study
is a mean-variance optimization of a water flooded syn-
thetic 2-dimensional black-oil reservoir model. An ensem-
ble of 30 realizations represents the geological uncertainty
associated with the permeability field.

Fig. 2. Well locations and permeability field of the first
realization in the synthetic two-dimensional black-oil
case study.

5.1 2-Dimensional synthetic reservoir model

To test the optimization tool, we have created a two-
dimensional synthetic reservoir model with a highly chan-
neled isotropic permeability field. Fig. 2 shows the syn-
thetic reservoir with the first realization of the permeabil-
ity field and the well locations. The synthetic reservoir
model has the physical dimensions (800 × 1000 × 10) m
and is discretized into an equidistant (80, 100, 1) Cartesian
grid. The ensemble permeability fields scales to a range of
0-1200 mD. The reservoir has 12 horizontal wells, consist-
ing of 6 water injectors and 6 producers. The injectors are
located in-line from south to north close to the eastern
boundary of the reservoir. The producers are located op-
posite along the western boundary. The reservoir fluid is
of a black-oil type. Table 1 shows the reservoir data. The
reservoir has an initial water saturation of 0.2 and an oil
saturation of 0.8.
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Table 1. Reservoir data.

Description symbol value metric

physical dim (x, y, y) (800, 1000, 10) [m]
grid-cell dim (∆x,∆y,∆z) (10, 10, 10) [m]
porosity, uniform φ 0.2 -
water compressibility cw 1.45e-5 [bar−1]
rock compressibility cr 4.35E-10 [bar−1]
capillary pressure Pc 0 [bar]
pore volume Vpore 1.6e6 [m3]
oil in place Voip 1.28e6 [m3]
permeability range (kx, ky) [0, 1200] [mD]
bubble-point pressure Pb 153.67 [bar]
datum press Pr 130.00 [bar]
datum depth dr 1500.00 [m]
oil water contact OWC 2000.00 [m]
gas-oil contact GOC 1000.00 [m]
initial water saturation Swi 0.2 -

Table 2. Model parameters.

Description symbol value metric

strategy MVO - -
number of realizations nθ 30 -
trade-off parameter λ 0, . . . , 1.0 -
simulation time tf 3600 [day]
number of control steps N 120 -
length of control steps ∆t 30 [day]
number of controlled wells nw 6 -
number of controls nu 720 -
initial controls uinit 62.5 [m3/day]
lower bound on controls umin 0.01 [m3/day]
upper bound on controls umax 250.0 [m3/day]
rom constraint bl, bi 30 [m3/day]
total bounds on injectors bu 750 [m3/day]
discount factor d 0.08 -
fluid prices: oil ro 283.04 [US$/m3]

gas rg 0.0036 [US$/m3]
water rw 62.90 [US$/m3]

water injection rw,inj 12.58 [US$/m3]

5.2 Numerical results for mean-variance optimization

We have performed a number of mean-variance optimiza-
tions of the 2-dimensional reservoir for the trade-off pa-
rameter, λ = 0.0, 0.1, . . . , 1.0, in-order to compute the
Pareto frontier (Capolei et al., 2015). The reservoir is sim-
ulated for tf = 3600 days with N = 120 control time-steps
of equal length, ∆t = 30 days. The optimizer manipulates
the water injection rates to obtain the maximum mean-
variance net present value. It uses 62.5 m3/day as a start-
ing iterate for the water injection. The individual injection
rates are bounded in the interval [0.1, 250] m3/day and
have a rate of movement constraint of ±30m3 between
control steps (per 30 days). The total injection rate of all
water injectors combined is restricted to a maximum of
750 m3/day. The bottom-hole pressure is kept constant at
125 bar in all producer wells throughout the simulation.
The discount rate, d, is set to 8% annually. Optimization is
performed using the interior-point algorithm in fmincon.
Table 2 shows the model parameters and Table 3 shows
the optimization parameters used in the optimization.

Fig. 3 shows the dashboard after convergence for the trade-
off parameter λ = 0.3. The dashboard shows the operating
profile (controls), the gradient of the objective w.r.t. the
controls, the objective value, and the mean net present
value together with the lowest and highest outcome. The
figure shows how the cash flow shifts towards the early

Table 3. Optimization parameters.

Description symbol value metric

algorithm interior point - -
max iterations maxit 100 -
max function evaluations maxit 1000 -
tolerance on optimimality tolopt 10−6 -
tolerance on step size tol∆u 10−6 [m3/day]

reservoir life. The net present value reaches 95 percent of
the optimal value after only 1350 days of production. The
optimizer converges after 91 iterations and 117 function
evaluations.

For any choice of the trade-off parameter, λ, the optimiza-
tion result is a Pareto-optimal solution. We note that for
λ = 0 and λ = 1 this corresponds to a variance opti-
mization and a robust optimization, respectively. Fig. 4
shows the computed efficient frontier. The figure shows
that the front is close to being monotonously increasing.
This implies that increasing return comes with increasing
risk.

6. CONCLUSION

We have developed software, RESOPT, for production
optimization that manages the workflow between reser-
voir simulation and numerical optimization. In this pa-
per, we applied RESOPT to production optimization
of a reservoir described by a black-oil model using an
ensemble-based mean-variance optimization criterion. RE-
SOPT uses Eclipse (E300) for reservoir simulation, com-
putation of the net present value, and computation of the
gradient of the net present value. By using an industry
standard simulator such as Eclipse, model based produc-
tion optimization is brought a step closer to routinely
implementation in closed-loop oil reservoir management.
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