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Abstract 

A new algorithm for the optimization of nonlinear systems under uncertainty is presented. The 
algorithm, based on a parametric programming framework, gives a complete map of the optimal 
solution in the space of the uncertain parameters, solving a minimum number of NLP subproblems and 
simplified multiparametric linear master problems. Through cumulative outer-approximations obtained 
from the solution of deterministic NLP at fixed values of the uncertain parameters, the master problem 
provides valid lower bounds that converge to the optimal values as the number of approximations is 
increased. Several heuristics are proposed to guide the mathematical algorithm, drastically reducing 
the computational requirements, still ensuring convergence to the optimal solution. 
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The optimization of manufacturing systems under 
uncertainty has been largely studied for the past two 
decades, trying to introduce the variations to which real 
processes are subject. Variations considered can be 
inherent to the process, like internal flows or catalyst 
decay, or external to it, like raw material availability. 

In the mathematical programming approach, this 
uncertainty has been captured mainly through stochastic 
formulations, where a probability distribution function is 
assigned to each uncertain parameter, or through multi-
period or scenario formulations, where fixed values of the 
uncertain parameters are used. In the past years, a third 
approach has also been considered, through parametric 
programming formulations. This approach has the 
advantage of giving a complete map of the optimal 
solution in the space of the uncertain parameters. 
Furthermore, a solution algorithm has been presented for 
linear problems where the computational complexity is 
almost independent of the dimensionality of the problem. 

For nonlinear problems, however, the geometrical 
increase of the number of deterministic NLPs that must 

be solved as the number of uncertain parameters 
increases, have restricted the size of the problems and 
particularly the number of uncertain parameters 
considered. 

A new algorithm for the solution of multiparametric 
nonlinear programming problems is presented here. The 
algorithm minimizes the number of deterministic NLPs 
that have to be solved using simplified linear 
approximations of the multiparametric problem and 
heuristics based on the estimation of the difference 
between the real parametric solution and the one obtained 
through the linear approximation. 

In the first part of the work, the algorithms of Dua and 
Pistikopoulos (1) and Moncada and Acevedo (2) for the 
solution of these problems are briefly discussed as the 
bases for the proposed procedure. Then, the new 
algorithm is explained and exemplified through a 
numerical problem, where the advantages of the algorithm 
are shown. Finally, some conclusions are given and future 
lines of research are suggested. 



   
 
Mathematical formulation. 

The multiparametric nonlinear programming (mpNLP) 
problem considered in this work is of the following form 
 
Min f(x) 
s.t. h(x)=0     (1) 

   g(x) ≤  b + Fθ 
 θmin ≤ θ  ≤ θmax 
 x∈Rn ;   θ∈Rs   
 
where f(x) represents the objective function, g(x) and h(x) 
represent the constraints of the problem, with x as the 
vector of variables involved in the model. Vector b and 
matrix F are constant terms, and θ represents the vector 
of uncertain parameters. It is assumed here that the model 
is convex. 

Dua and Pistikopoulos (1999) presented an algorithm 
for the solution of mpNLPs as the one in Eq. (1), through 
the solution of a series of deterministic NLP primal 
subproblems and multiparametric linear master problems 
(mpLP). Based on the convexity properties of the model, 
linear combinations of the primal subproblems represent 
valid upper bounds while the solution of the master mpLP 
represents a valid lower bound to the optimal parametric 
solution.  

The solution of the mpLP is obtained following the 
algorithm of Gal (1995). In this algorithm, the solution is 
given by a set of “critical regions” (CR), where optimal 
solution functions of the variables and the objective 
function are defined in terms of θ. The CRs are defined by 
linear constraints in terms of θ, depicting hyperspaces 
where the optimal functions are valid. 

It can be proved that, for convex models, the vertices 
of these CR´s represent the points of maximum error 
between the parametric nonlinear solution and the linear 
approximation (Dua and Pistikopoulos, 1999). The 
solution of deterministic NLPs at these vertices will then 
give fixed values of θ to iterate between primal NLP 
subproblems an the master mpLP problem. Furthermore, 
the convergence of the parametric linear approximations 
to the solution of the nonlinear problem at these vertices 
guarantees the convergence of the whole parametric 
solution to a desired tolerance δ. 

This methodology presents three main disadvantages. 
Firstly, it requires of the solution of a large number of 
NLP subproblems (at every vertex of the CRs), which 
increases not only with the number of uncertain 
parameters, but also with the number of critical regions 
obtained from the master problem. Secondly, since the 
number of critical regions usually increases as the 
complexity of the mpLP increases, the authors use only 
one of those NLP solutions to reformulate the new 
master problem. This not only could lead to a more 
relaxed approximation and eventually to a larger number 
of outside iterations, but at the same time, the 
information already obtained from the solution of the rest 
of the vertices is ignored. Finally, it generates complex 

mpLP master problems by including in a cumulative way 
the linearizations of the nonlinear functions at the 
selected vertex, when many of these linearizations are 
redundant. 

These aspects are considered in the work presented by 
Moncada and Acevedo (2001) where a heuristic 
procedure is used to reduce the computational effort, 
mainly by reducing the number of NLPs to be solved per 
iteration. 

This reduction is obtained by avoiding the solution of 
the NLP subproblems at vertices where the error of the 
parametric solution, i.e. the difference between the 
solution of the mpLP at a given θ and the real solution at 
that point, is less than a given tolerance. Since the real 
optimal value is not known prior to the solution of the 
NLP at that θ, several estimation methods where studied. 
The best results were obtained from the estimation of the 
change in the objective function when moving from a 
vertex of known solution (θj) to the vertex under study 
(θi). This change can be estimated as follows: 
 

( ) ( )jilin ZOFZ j θθθ *−=∆        (2) 

 
where Z*(θj) is the known optimal solution at θj and 

( )ilin
jOF θθ  is the linearization of the objective function 

with respect to θj, evaluated at θi. ∆Z is considered an 
estimation of the error of the parametric solution at θi, 
based on the information obtained by the solution of the 
NLP at θj.  

A heuristic criterion (Criterion of the Expected Error) 
is then applied to decide whether the NLP should be 
solved or not. This criterion is mathematically defined as 
follows: 
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where ( )iZ θ is the parametric solution obtained form the 
mpLP, evaluated at θi, and ε is a tolerance. 

The left-hand side of Eq. (3), named here the 
Coefficient of the Expected Error (CEEi,j), evaluates if 
the objective function is changing rapidly around the 
vertex where a solution has been found. If so, it is likely 
that the new NLP will add important information to the 
master problem. In this way, if the relative change is 
greater than the right-hand side then a new NLP must be 
solved. The right-hand side has a term that modifies the 
tolerance ε trying to define if the change of the objective 
function has already been captured by the parametric 
solution, by comparing the parametric solution to the 
linearized objective function. This relative difference 
between these two terms is added to ε, to increase the 
tolerance with which the solution of the NLP at that 
vertex is avoided. The value of ε was set at ten times the 



   
 
final tolerance (δ) and reduced every time no vertices 
were selected in an iteration, until the value of the final 
tolerance is reached (Moncada and Acevedo, 2001). 

Proposed Algorithm  

In this section, a new algorithm is developed based on 
the definition of a representative Coefficient of the 
Expected Error (CEErep). CEErep represents the 
estimation of the error that the parametric linear profiles 
could have at a given vertex based on the information 
obtained from all the deterministic NLP subproblems that 
have been solved through out the algorithm. This 
coefficient is then used to determine the vertices that are 
expected to have  the largest errors, which will in turn be 
the candidate points where new deterministic NLPs will 
be solved. The main steps of this algorithm are described 
now. 

Initialization 

An initial optimal solution is found by solving 
problem (1) as a deterministic NLP, taking the vector of 
uncertain parameters, θ, as variables. The optimal solution 
found, Z*(θ0), is used to define outer-approximations of 
the model to generate the first mpLP. A tolerance (δ) for 
the approximation to the mpNLP is set. 

Solution of the Multiparametric Master Problem 

The mpLP master problem is solved according to the 
methodology of Gal (1995). Its solution yields a number 
of critical regions and the corresponding optimal 
functions. The vertices of the critical regions are 
identified  (Dua and Pistikopoulos, 1999) and those 
infeasible are discarded.  

Solution of the Primal NLP Subproblems 

The vertices where new deterministic NLPs must be 
solved are defined by the systematic application of the 
Criterion of the Expected Error according to the 
following procedure: 

The criterion in Eq. (3) is evaluated for every 
vertex θi of the new parametric solution with 
respect to every point θj where a 
deterministic NLP has already been solved. If 
CEEi,j is less than the right-hand side of Eq. 
(3) for any θj, vertex θi is discarded.  

A representative Coefficient of the Expected 
Error (CEEi,rep) is obtained for each vertex as 
follows: 
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The vertex with the largest CEErep represents an 
estimation of the point in θ where the 
maximum error may occur, and is therefore 
selected for the solution of a deterministic 
NLP.  

The error between the parametric linear 
approximation and this new solution is used 
to define the convergence of the algorithm. If 
the error is greater than δ and ε, then the 
value of ε is update with the error and the 
step is repeated with the new solution of the 
NLP. If the error is greater than δ but less ε, 
then the major iteration is concluded. If the 
error is less than δ, but another vertex was 
solved in this step, the major iteration is 
concluded. However, if no other vertex was 
solved then the algorithm has converged and 
the last parametric solution represents an δ-
approximation of the solution of the mpNLP.  

The rest of the vertices with smaller CEEi,j are 
discarded and the new master problem is formulated. 

Formulation of a New Master Problem 

With the solutions at the chosen vertices, new 
linearizations of the nonlinear functions are determined 
with respect to x. Including all the approximations, 
however, increases the complexity of the mpLP and, in 
some cases, do not improve greatly the solution. The 
linearizations are then analyzed as follows: 

Linearizations of a constraint are selected so as to 
ensure that the value of the constraint at each 
solution point obtained from the NLPs is 
approximated to a tolerance of ε with the 
minimum number of approximations. 

Linearizations of the objective function at points 
where the calculated error of the parametric 
approximations is less than the tolerance ε, 
are analyzed in a similar way as the 
constraints. 

Linearizations of the objective function at points 
where the calculated error of the parametric 
approximations is larger than the tolerance ε, 
are always included. The error between this 
linearization evaluated at any other point θk 
where a NLP has been solved can then be 
evaluated. If this error is less than the 
tolerance ε, then the linearization obtained 
from the solution at θk can be discarded. 

The algorithm for the solution of mpNLP continues  
with the solution of the reformulated master problem. 

This algorithm has three main features: first, it 
reduces considerably the number of NLPs to solve at each 
iteration; second, it exploits the information available 
from the solution of deterministic NLPs through out the 
algorithm, and three, it reduces the complexity of the 



   
 
master mpLP problem while maintaining a tight 
approximation of the original problem.  In the next 
section, a numerical example is presented in detail to 
evaluate these features. 

A Numerical Example 

The example presented here is based on the structure 
of Example 2 solved by Dua and Pistikopoulos (1999). 
The original problem is a mixed-integer nonlinear 
problem, which is solved here for fixed values of the 
integer variables, considering all the processes.  

The new mpNLP formulation includes 26 continuous 
variables, 12 equality constraints and 24 inequality 
constraints. In addition to the three uncertain variables 
considered in the original problem, another three were 
included in this formulation. In three of the continuous 
parameters, a margin of variation for the uncertain 
parameters of 50% or more was considered. A discrete 
parameter (equipment availability) is also considered. The 
final tolerance was set to 3%, i.e. δ=0.03. 

The solution procedure runs as follows. The first 
optimal solution identified vertex θ0=(1,1,1,1,1,1) as the 
best-case scenario. At this point linear outer-
approximations were defined to formulate the first mpLP 
master problem. Its solution yields three critical regions 
delimited by 140 feasible vertices, including θ0. The 
Criterion of the Expected Error is applied to these 
vertices finding 28 vertices to discard.  

From the evaluation of the representative coefficient 
CEErep for the remaining 112 vertices, the vertex with the 
largest expected error is θ1=(0,0,0,0,0,0). After solving 
the NLP at θ1 a real error of 3.75% is determined and ε is 
set to 0.375. 

The criterion is applied again to the 111 remaining 
vertices, this time with respect to θ0 and θ1, selecting 87 
vertices to be discarded. The representative coefficient 
CEErep is re-evaluated for the 24 vertices left, identifying 
θ2=(0.58, 0, 1, 1, 0, 0.16) to solve a new deterministic 
NLP. Vertex θ2 is found infeasible, and a feasibility 
problem (Dua and Pistikopoulos, 1999) is solved to find 
the nearest feasible point at θ2=(0.55, 0, 1, 1, 0, 0.203). 
The solution of the NLP shows that the error of the 
parametric approximation at this point is 2.615%, smaller 
than the problem tolerance, defining the end of this major 
iteration. 

The linearizations obtained at θ1 and θ2 are now 
compared to those obtained at θ0. The linearization of the 
objective function with respect to θ1 presents a good 
approximation to the parametric solution in every vertex, 
and only this linearization is included to the next master 
problem. 

For the nonlinear constraints, however, the new  
linearizations with respect to θ1 are redundant (based on 
the current value of ε) with respect to those obtained at 
θ0, so the first linearizations remain in the master 
problem.  

The new mpLP obtained was solved identifying a 
parametric solution defined by 5 critical regions with 238 
feasible vertices. After using the heuristic criterion, the 
largest estimated error is found at θ3=(0.0585, 1, 0, 0, 1). 
Solving the NLP, a real error of 1,545% was calculated 
indicating that the error is within tolerance and therefore 
we have reached the mpNLP solution. 

The computational efficiency of the algorithm has 
been demonstrated solving only 3 NLPs out of a total of 
140 vertices in the first iteration, and only one in the 
second iteration, out of a total of 238 vertices. The NLPs 
at these final vertices were solved to confirm that they 
were all within the defined tolerance.  

Conclusions 

In this work, a parametric programming approach was 
proposed for the consideration of uncertainty in the 
optimization of manufacturing systems. A new algorithm 
was developed that allows the incorporation of larger 
numbers of uncertain parameters without increasing 
geometrically the computational efforts. 

The estimation of an expected error allows, on one 
hand, the selection of suitable points for the solution of 
deterministic NLPs, and, on the other, the incorporation 
of the information obtained through out the algorithm to 
reduced the number of subproblems that are solved. It 
also allows to define good approximations to formulate 
the master problem. The approach uses several heuristics 
to guide the mathematical algorithm, which have proved to 
be very efficient and consistent in the examples that have 
been solved. Furthermore, this heuristics do not change 
the convergence properties of the basic algorithm. 

New lines of research that this algorithm permits to 
visualize now are the extension to mixed-integer models 
and non-convex formulations.  

References 

Dua, V., Pistikopoulos, E. (1999) Algorithms for the solution of 
multiparametric  mixed-integer nonlinear optimization 
problems. Ind. Eng. Chem. Res. 38, 3976. 

Gal, T. (1995) Postoptimal Analyses, Parametric Programming and 
Related Topics. Walter de Gruyter. Germany. 

Moncada, A., Acevedo, J. (2001) A methodology for the 
minimization of environmental impact of chemical 
processes under the presence of uncertainty.6th World 
Congress of Chemical Engineering. Australia. 

 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 631
	02: 632
	header2: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	header3: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	03: 633
	header4: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	04: 634


