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Abstract 

This paper proposes a two-stage strategy to deal with multi-objective conflicts in the process synthesis 
and operation. This approach is founded on the combination of the conflict-based analysis and multi-
objective optimization technique. First, a contradiction matrix is formulated to identify the conflicts 
among the design objectives and next to select the useful heuristics for removing those conflicts. This 
approach is used for screening and evaluation of the process alternatives in order to generate the 
efficient superstructure and the useful information for process operation. In the second stage, the multi-
objective optimization is carried out by the simulated annealing algorithm (SA) using process simulator 
ASPEN PLUS. SA algorithm is modified by the dynamically adjusted stepsize (DAS) for continuous 
variables under the consideration of their importance for the optimization target. DAS speeds up the 
solution search through adapting the changed stepsize to the current iteration. The proposed approach is 
illustrated by a case study of the hydrodealkylation of toluene (HDA) process, taking into account  
process economics and its potential environmental impact. 
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Introduction

The industrial processes have to be designed and 
operated in a manner enabling the simultaneous fulfillment 
of the economic criteria, safety, environmental 
requirements as well as other objectives. The major 
challenge of design and operation lies in resolving the 
conflicts between those objectives (Miettinen, 1999). The 
conflict occurs when improving one objective results in 
the deterioration of the other ones. Therefore the essential 
task for process designers is to develop tools for assisting 
in the trade-off among those conflicted multi-objectives. In 
view of this issue, current research puts attention on 
improving the optimization techniques or exploring the 
quantitative objective indicators to support the 
optimization at the stage of the detailed design (Dantus et 
al., 1999). However, the conflicts among the objectives do 
occur in the early stage of design and they strongly 

influence the decision-making process of designers. The 
handling of the conflicts in the early design stage is the 
precondition for effective process optimization at the stage 
of the detailed design. Therefore it is an important issue to 
develop a strategy to handle the conflicts in the context of 
the whole design process in order to achieve the real 
optimal solutions. 

This work presents a combined approach for dealing 
with multi-objective conflicts of the process synthesis and 
operation in both, early and detailed design stages. A 
conflict-based analysis of multi-objectives in the early 
stage is aimed at the screening and evaluation of process 
alternatives. In the second stage, multi-objective 
optimization is carried out by the modified simulated 
annealing algorithm (SA). The illustration of this approach 
is presented using HDA case study. 



  

The Methodology 

Overview 

The combined approach deals with the design process 
in two stages as shown in Figure 1.  

 
 
 
 
 
 
 

 
 
 

Figure1. The two stage approach 

During the early design stage, there is a high 
possibility that there will occur conflicts among the 
objectives. It is due to the fact that at early design stage 
there are the complex design uncertainties as well as the 
huge decision space. The synthesis task is to remove or 
decrease the occurrence of the conflicts through the proper 
decision-making process. A contradiction matrix is 
proposed as a tool for conflict-based analysis of the 
synthesis process. In the second stage, multi-objective 
optimization is realized to trade off the conflicts of 
objectives. SA algorithm together with ASPEN simulator 
is used for conducting the optimization. SA algorithm is 
modified by applying the dynamically changed stepsize of 
the continuous variables in every iteration. 

Modification of Solution Space  

TRIZ is an approach to identify the system’s conflicts 
and contradictions for solving the inventive problems 
(Altshuller, 1998). The main idea of TRIZ consists in the 
modification of the technical system by overcoming its 
internal contradictions. Therefore, it is an efficient method 
for modifying the solution space and early screening the 
alternatives by the conflict-based analysis. 

The formulated contradiction matrix is composed of 8 
design objectives, such as economic criteria, product 
quality, safety, environmental impact etc. The design 
objectives form the rows and columns of the matrix. 86 
design heuristics Pk, k= 1-86 extracted from the available 
literature (Douglas, 1988 and Smith, 1995) constitute the 
matrix elements. If the design heuristics Pk influences the 
objectives i and j,  then it is positioned at the  intersection 
of the row i and column j (see Table 1). Every heuristics is 
characterized by so-called influence coefficient Ii, i=1- 4 
and flowsheet phenomena indicator Sj, j= 1-6. The 
influence coefficient Ii represents the character of the 
influence on the two concerned objectives when applying 
the heuristics. The flowsheet phenomena correspond to the 
region of the flowsheet structure in which the given 
heuristics should be applied (Li et al., 2002). 

The matrix reorganizes the available design heuristics 
based on their possible influence on the design objectives. 
It is used for identifying the conflicts among the objectives 
and handling them by selecting the suitable heuristics 
considering the concerned objectives. As a result, the 
design alternatives are screened and preselected to 
generate the efficient superstructure and useful 
information for process operation. 

 
Table 1. A fragment of the contradiction table 

 Multi-objective Optimization  

In this work, multi-objective optimization takes into 
account the trade-off of the conflicts between the 
economic criteria and environmental impact. The first 
objective seeks to minimize the negative profit (-P). The 
evaluation of environmental impact is based on the waste 
reduction (WAR) algorithm (Cabezas et al., 1999).  

The method of summation of weighted objective 
functions is used to convert the normalized multi-
objectives function into one utility function as shown in 
Eq. (1), where, 0.10.0 ≤≤ �α  and the utility function 

),( ��IX α is linearly combined with the normalized 

objective functions and the weighting factors �α . This 

method has certain disadvantages. However it can be 
applied to generate a strongly non-dominant solution that 
can provide the initial answers for a trade-off among the 
various objectives (Coello, 2000).  
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Potential Environmental Impact  

The potential environmental impact (PEI) is proposed 
by Cabezas et al. (1999) to provide the quantitative 
indicators that represent the environmental benignity. 
There are nine different impact categories of PEI, such as 
the four local toxicological categories: human toxicity 
potential by ingestion (HTPI), human toxicity potential by 
dermal, inhalation and exposure (HTPE), aquatic toxicity 
potential (ATP) and terrestrial toxicity potential (TTP).  
The relative weight factors of different PEI are customized 
for specific or local conditions. Here we use the PEI 
generation per mass of product as the environmental 
impact criteria. The lower the value the more 
environmentally friendly the process. It can be calculated 
based on process data, such as stream flow rates, stream 
compositions, and environmental impact parameters 
(Cabezas et al., 1999). The stream flow data can be 
obtained through the use of a process simulator.  
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The Modified Simulated Annealing Algorithm  

Simulated annealing is a Monte-Carlo technique for 
multivariable optimization, which has been successfully 
used to solve many combinatorial problems. The method 
is based on an analogy to the physical process of annealing 
(Kirkpatrick et al., 1983). The main advantage arises that 
there is no assumptions in the form of objective function 
and constraints. Much work has been done to improve the 
performance of the SA through modifying the objective 
function such as the stochastic annealing algorithm 
(Chaudhuri et al., 1996), and the annealing schedule like 
3N3 number of movement (Ku et al., 1991). This work 
focuses on continuous variable optimization via adapting 
the dynamically changed stepsizes to the current iteration.  

Dynamically Adjusted Stepsize 

For continuous variables, it is practically impossible 
to choose the direct neighbors because of the large number 
of points in the search space. Neither too small nor too 
large stepsize brings the reasonable solutions. There is 
always a trade-off between accuracy and robustness in 
selecting an appropriate step width. The method of step 
width adaptation (Eq. 2) proved to be able to significantly 
improve the performance of SA (Nolle et al., 2001). 
However, the adaptation constant β  is empirically 

designed which limits its applicability and validity.  
We observe that β controls the changing speed and 

the value of the stepsize. For the big values of β , the 

stepsize is changing fast with the iteration at the high 
temperature. As the system is getting cooler, the stepsize is 
changing slowly and reaching small values near the 
optimal point.  The design and optimization shows, that 
the different variables have the different influence on the 
particular optimization objectives. It influences in the 
obvious way the solution searching process. The variable, 
with the more important influence to the given 
optimization objective, is assigned the bigger value of β . 

While the one with the less important influence to the 
optimization objective, is assigned the smaller value of β  
to avoid the redundant search in the solution spaces. 
Therefore, the different values of β are assigned to the 

various continuous variables in order to reflect their 
importance for the optimization targets as shown in Eq. 
(3). It is the function of the weights �α as well as the 

weights �Z . The weights �α of the normalized design 

objectives reflect their importance for the utility function. 
The weights �Z  mean the importance of the optimized 

variables for the concerned objectives. The weights �Z , 

taking the values from 0 to 10, indicate the degree of 
importance of the particular variable, from unimportant to 
extremely important. It is determined based on process 
analysis of the early stage of synthesis. The values of β  

take the maximum value of the product of the two kinds of 
weights, which are adjusted for searching every Pareto 
point. We called the modified term as the dynamically 

adjusted stepsize (DAS). It changes the stepsize of the 
continuous variables with every iteration.  
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s0- initial stepsize        s - dynamic stepsize at iteration n 
n - current iteration    nmax - maximum number of iterations 
β - adaptation constant  α - weights of design objectives  
Z - weights of the importance of the variables (0-10) 

Case Study 

The HDA process has been extensively studied by 
Douglas (1988) with a hierarchical heuristic synthesis 
approach. The problems presented here consist in the 
conflict analysis between economic criteria and 
environmental impact for screening and evaluation of 
process alternatives; and optimization the alternatives by 
the modified simulated annealing with process simulator.  

The primary and side reactions of the process are:        
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The detail process specification refers as Douglas (1988). 

Modification of Solution Space 

Considering the objectives of profit and environment 
impact, there are three identified conflicts: among the 
capital and operating cost (1x2), capital cost, operating 
cost with environmental impact (1x4, 2x4). Based on the 
contradiction matrix, the heuristics concerned with those 
conflicts are analyzed using the value of the influence 
coefficients. For example, Heuristics 2 suggests using an 
excess of one of the reactant. Its influence coefficient 
indicates that raw material efficiency is improved but the 
capital cost is increased simultaneously. From the point of 
view of the environmental impact, the heuristics 58 
(recycling the by product for inhibiting its formation at the 
source) proposes recycling diphenyl byproduct instead of 
its recovery; and the heuristics 79 suggests that there 
should be vapor recovery system arranged on the purge 
stream. Then suitable heuristics are selected to screen and 
evaluate the corresponding alternatives. The compact 
superstructure can be achieved ensuring the efficient 
structure interconnection and useful information of 
operations. Those can reduce the combination size of the 
problem to assist the next multi-objective optimization. 
The detail description can be found in Li et al. (2002). 

 Multi-Objective Optimization 

In terms of economics and potential environmental 
impact, the multi-objective optimization problem in this 
work is subject to the following constraints: the hydrogen 
feed has a purity of 95%; the purity of benzene product is 
at least 95%; one of the objective functions is profit 
defined as product sold minus raw material costs; the 



  

relative weight factors of different environmental impacts 
are set to 1. The stream cost data and environmental 
impact index refers as presented in Fu et al. (2000) 

The SA algorithm with ASPEN simulator is applied as 
the optimization techniques. It optimizes the configuration 
through the evolution of the structural and stream states. 
However it is very computationally demanding to get the 
Pareto set for each possible configuration. In order to 
verify the effect of the modified SA, there are presented 
the results of optimization of flowsheet composed of 
adiabatic reactor, and stabilizer separation column and 
having the diphenyl stream as byproduct. Three 
continuous variables are optimized with the bounds and 
initial values listed in Table 2. The weights of importance 
of three variables are determined as 7, 9, 9 for profit 
objective and 5, 5, 9 for environmental impact based on 
process analysis. Calculations are performed on Pentium 
III running at 700 MHz frequencies. 

 The obtained Pareto set is plotted in Figure 2 
presenting the comparison between the modified SA with 
DAS and the original SA under the same initial data. The 
nearly identical results confirm the accuracy of this 
modified method. The efficiency of the method is 
measured by the number of the function evaluation and 
CPU calculation time of every obtained Pareto points as 
shown in Figure 3. It is proved that, for the run of every 
Pareto point, the modified SA is more efficient with 
respect to the convergence and the amount of the 
computational work. Table 3 shows the optimized results 
of minimized and maximized objective functions, the 
corresponding values of continuous variables and the 
output flowrate of five components. 
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Figure 2. The optimal Pareto set 

Table3. Results for the optimized process alternative  

 Min P  Max P Min PEI Max PEI 

Profit ($/hr) 182.71 224.98 195.81 210.87 
PEI (10-2/hr)  2.625 2.433 2.382 2.695 
Hydrogen feed (kmol/h) 240.00 250.00 240.59 249.89 
Toluene feed (kmol/h) 130.00 120.00 129.92 121.88 
Conversion  0.600 0.800 0.797 0.601 
Output (kg/h)     
Hydrogen 223.42 260.089 223.93 257.18 
Methane 2264.44 2120.04 2271.27 2142.71 
Toluene 78.255 32.441 34.146 75.622 
Diphenyl 1847.15 1722.51 1861.53 1733.36 
Benzene 8217.15 7601.14 8233.58 7700.63 

 

 

 

 

 

 

 

Table2. The bounds and initial values for variables 

Continuous variables Lower  Upper  Initial value 
Hydrogen feed (kmol/h) 240 250 245 
Toluene feed (kmol/h) 120 130 125 

Conversion of reactor 0.6 0.8 0.7 

Conclusions 

The paper proposes a two-stage approach to deal with 
the conflicts resulting from the multi objective nature of 
the process synthesis and operation. The conflict-based 
analysis of the objectives is used for screening and 
evaluation of the alternatives in the early stage of design. It 
assists to generate the efficient superstructure and useful 
information for the second stage, multi-objective 
optimization. The optimization technique is based on the 
simulated annealing algorithm using process simulator 
ASPEN PLUS. For optimizing the continuous variables, 
SA adapts the DAS to current iteration. The optimization 
results suggest that the proposed method can improve the 
computational efficiency while keeping optimization 
accuracy. The proposed approach is illustrated by HDA 
case study where the economic criteria as well as the 
environmental impact are set as the optimization criteria. 
The complete Pareto set over the flowsheet superstructure 
will be generated in the future work. 
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Figure3. The evaluation of optimal points 
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