
AN ALGORITHMIC FRAMEWORK FOR
IMPROVING HEURISTIC SOLUTIONS
APPLIED TO NEW VERSIONS OF THE
TRAVELING SALESMAN PROBLEM

Jaein Choi ∗ Matthew J. Realff ∗,1 Jay H. Lee ∗

∗ Center for Product and Process Systems Engineering,
School of Chemical Engineering, Georgia Institute of

Technology, Atlanta, Georgia 30332-0100

Abstract: Many practical scheduling and planning problems involve optional
tasks or conditional tasks such as cleaning process units or taking additional
measurements. Proper consideration of these tasks increases the complexity of
scheduling problems. The task network structure becomes more complicated and
the decisions often require information that is available only as the schedule is
executed. To exemplify the role of such optional tasks in scheduling problems,
new deterministic and stochastic traveling salesman problems(TSPs) variants are
introduced. Based on the premise that the use of heuristics would be the only
recourse in handling such problems, we propose a novel way to improve upon a
solution obtained from heuristics by applying dynamic programming to the subset
of states visited by the heuristics. The method represents a way to take a family of
solutions and patch them up as an improved solution. However, the ‘patching up’
is accomplished in state space rather than in solution space. We develop and apply
the approach to the TSP variants to examine the degree of improvement that can
be obtained by the method. For small problems, we compare the quality of these
solutions with the global optimal ones. The proposed method can be generalized
to other planning and scheduling problems.

Keywords: Scheduling, Planning, Combinatorial Optimization, Conditional
Tasks, Heuristics, Traveling Salesman Problem

1. INTRODUCTION

Many scheduling and planning applications in-
volve optional or conditional tasks. Here optional
tasks refer to those that the scheduler has the op-
tion of determining whether and when to perform.
Conditional tasks represent those tasks that must
be performed if certain conditional requirements
are met. For example, cleaning process units to
remediate fouling may be related to an observa-
tion of the state of the unit or a measurement of
batch quality. Additional measurements of current
process conditions or batch properties could be
made to enable better downstream processing and
batch-to-batch control. These measurements may

1 Email: matthew.realff@che.gatech.edu

trigger new processing tasks to be performed on
batches that do not meet specifications.

Scheduling and planning problems with these
types of tasks have additional complexities and
some novel features with respect to traditional
problem definitions and formulations. First, the
task network structure is no longer fixed; it can
be changed by additional tasks. Second, the batch
task parameters may assume values that depend
on the performance of the tasks; for example
cleaning a reactor may increase the product yield.
Third, the decision of whether to perform these
types of tasks is often based on information about
the process state directly gathered from the pro-
cess at the time of decision. Fourth, often only par-
tial information to support the decision is avail-
able, thus what information is known must be ex-



plicitly represented. The evolution of the informa-
tion state is usually coupled with the performance
of certain optional tasks. For example, optional
tasks such as measurements, may not change the
state of the process itself, but improve the future
information available for decision-making.

Scheduling or planning problems involving these
types of tasks require the solution of decision
problems that have significant combinatorial com-
plexity, layering the decisions about when and if
to perform the optional tasks on top of other de-
cisions. Furthermore, the information tasks make
the problem multi-stage in nature, as the new in-
formation state can be used to revise the existing
scheduling or planning decisions.

To begin to develop an understanding of this
class of task planning and scheduling problems,
we introduce a new deterministic Traveling Sales-
man Problem variant as a representative of a
deterministic scheduling problem with optional
tasks. For the deterministic TSP with an optional
task, conventional optimization problem formu-
lations such as a dynamic program (DP) and
mixed integer linear program (MILP) can be used
to find global optimum solution. These methods
are limited to small problems due to the rapid
growth the solution space that has to be searched
with the size of the problem. We propose a new
solution method based on combining suboptimal
solutions from heuristics for the problem through
an exhaustive dynamic programming search of the
subset of states “visited” by the heuristics. This
enables us to find a solution that outperforms the
heuristic solutions without significant additional
computational cost.

2. DETERMINISTIC VERSION OF
TRAVELING SALESMAN PROBLEM WITH

AN OPTIONAL TASK

The prototypical traveling salesman problem re-
quires the construction of the lowest cost tour of
a set of cities, where each city must be visited
exactly once on a tour(Lawler and Eugene, 1985).
The cost is representative of the travel between
the cities, and can be the same or different in both
directions. The problem is deceptively simple, but
belongs to the class of NP-hard optimization prob-
lems, (Garey and Johnson, 1979), for which no
algorithm with computation time that scales as a
polynomial in the size of the problem is known.
Several scheduling problems of interest to chem-
ical engineers have been formulated as TSP’s or
close variants. For example, the No-Wait Flow-
shop problem can be transformed to TSP (Penky
and Miller, 1991), resource constrained sequencing
problem can be reduced to a resource constrained
TSP (Pekny et al., 1993) and the parallel flowshop

problem can be transformed to a constrained TSP
(Gooding et al., 1994).

2.1 Problem Description

Our variant of TSP maintains the same basic
structure of the problem, each city being visited
exactly once per tour, but modifies the cost of
travel. It is assumed that when a salesman reaches
a city, a coupon may be purchased that will lower
the “distance” or, more abstractly, the cost of
traveling between the cities he has not yet visited.
The discount is not applied uniformly to the costs
of travel and hence the salesman may bias his tour
to reach certain cities early to take advantage of
discounts on other potential legs of the journey.
The coupon is to be purchased exactly once or not
to be purchased at all during the tour, and its cost
decreases with the number of cities that remain to
be visited. The decisions that the salesman has
to make are both the order in which he visits
the cities and the location at which he buys the
coupon.

The introduction of the coupon adds a new di-
mension to the classic TSP, marginally increasing
the size of the solution space ((N−1)! to N ! ), but
more importantly, it disrupts the original problem
structure. For example, to represent the problem
as an integer program requires not just capturing
the binary decisions of the connectivity between
cities, but also the relative location of the city
within the tour with respect to the coupon pur-
chase. We have developed this model to explore
the idea of additional tasks in scheduling that are
not directly involved in the schedule but which
modify the environment. The proposed formula-
tion is only exemplary and can be modified, for
example, to accommodate multiple coupon buying
opportunities, which decrease the cost of travel
in a successive manner. In this case, the costs
might represent the transitions between batches
of different products. The transition costs can be
lowered by executing a task, such as a set of lab
tests, after each batch.

2.2 Illustrative Example : Deterministic TSP with
a discount coupon

Consider a small size(10 cities) TSP with the
option of buying a coupon. In this example, the
coupon prices were chosen by drawing 10 random
numbers from a uniform distribution from 0 to 120
and assigning them to stages 1 through 10 in order
of decreasing value. The discount factor for each
cost element was also drawn from a uniform ran-
dom distribution between 0 to 0.8. The details of
the particular cost matrices and coupon prices can



be found at (http://dot.che.gatech.edu/ Informa-
tion/research/issicl/FORCAPO2003CRL.pdf). For
the original TSP, without the optional task, a
large number of algorithms and heuristics have
been developed (Lawler and Eugene, 1985). But
with the optional task these methods may not
apply, at least not directly. In this paper, four
different solution methods will be introduced, in-
cluding our novel approach based on combining
heuristics with dynamic programming. Each ap-
proach represents a different level of compromise
between the accuracy of solution and computa-
tional complexity.

2.3 Dynamic Programming

Dynamic Programming is a technique that can
be used to solve optimization problems with a
certain multi-stage structure. Dynamic program-
ming obtains solutions by working stage by stage,
usually backward from the last stage to the first
stage, thus breaking up a large, unwieldy problem
into a series of smaller, more tractable, prob-
lems. The original TSP has been formulated as a
dynamic programming problem (Winston, 1993)
(Bertsekas, 1995), and we modify this for our
particular variant.

2.3.1. Definition of State The state, denoted by
Xt, consists of three pieces of information: the first
two are the current city, i, and the set of cities
already visited before the current stage t, which
is denoted by St. These two are the states used for
the original TSP. The additional state information
is a binary variable,γt, indicating whether or not
the coupon has been purchased. It takes the value
of 1 if the coupon has already been purchased
before stage t, and 0 if not, this will be termed the
coupon status. Hence, the state for our problem
is:

Xt = (i, St, γt) (1)

Once the state is defined, the DP recursion can be
formulated using the following equations.

ft(Xt) = min
j 6∈St,j 6=1,δt∈{0,1}

{gt(Xt, j, δt)

+ft+1(Xt+1)} for t = {1, 2, ..., N} (2)

fN (XN ) = 0 ∀XN (3)

Xt+1 = (j, St ∪ j, γt + δt), s.t. γt + δt ≤ 1 (4)

where t = 1, 2, ..., N for N -cities TSP and ft(Xt)
represents the minimum cost that must be in-
curred to complete a tour if the t − 1 cities in
the set St have been visited, city i was the last
city visited, and the coupon has been purchased
already if γt = 1 (or not purchased if γt = 0). δt is

introduced to represent the decision of purchasing
the coupon at stage t. According to the problem
definition in 2.1, the salesman can buy the coupon
only once throughout the tour; therefore δt is
constrained to be 0 if γt is 1. γt+1 can be expressed
as γt + δt. In the equation (2), the current stage
cost, gt, is calculated by following equations:

gt = cO
ij ; if γt = 0 and δt = 0,

gt = cD
ij + CPt; if γt = 0 and δt = 1,

gt = cD
ij ; if γt = 1 and δt = 0

where cO
ij is the cost of traveling from the city i to j

before buying the coupon, cD
ij is the cost for doing

the same once the coupon has been purchased,
and CPt is the coupon price at stage t.
The DP approach keeps tracking the feasible state
transitions between stages while finding minimum
cost-to-go at each stage.

2.3.2. Computational Load of Dynamic Program-
ming The computational load of this DP algo-
rithm is directly dependent on the size of state
space. Since one must always start from city 1,
there is only 1 state for the first stage. Also, since
one must end at city 1 and one has the option of
not buying the ticket at all, there are two possible
states for the last stage.

From stage 2 to N , the number of possible states
for stage t,(NPt), can be calculated by following
equation (5)

NPt =
2(N − 1)!

(N − t)!(t− 2)!
(5)

where, N = the number of cities , t = {2, 3, ..., N}
stage number. Because the DP solves the prob-
lem though stage-wise recursion, the number of
comparisons at each stage t is given by the mul-
tiplication of the number of states at stage t and
the number of states at stage t + 1. Considering
the state transition rules (for example, one cannot
“unbuy” the previously bought coupon) and using
the equations in (5), the total number of compar-
isons required to solve this problem by DP can
be calculated. There are NPt and NPt−1 states
at stage t and t − 1 respectively, therefore with-
out considering state transition rule, there can be
NPt ·NPt−1 cost-go-values incurred by connecting
states at t stage and states at t− 1 stage. But the
state transitions from “not bought” states at stage
t to “bought” states at stage t−1 are not allowed.
Therefore, at stage t, 3

4NPt ·NPt−1 comparisons
of cost-to-go are required.

For this example(10 cities), the number of pos-
sible states is 4612 and the number of com-
parisons is 2779974 calculated by

∑N
t=1(

3
4NPt ·

NPt−1). On the other hand, to solve this problem
with explicit enumeration requires (N !)ln(N !) =



54810892 comparisons. Despite the superiority of
DP to explicit enumeration, it is limited to fairly
small TSPs. For example for a 50-city TSP, the
total number of states goes up to 2.76×1016. The
computational load scales exponentially with the
number of cities and the approach quicly becomes
intractable. The solution obtained by using the
DP approach for the given example is listed and
compared with the solutions from the other meth-
ods in subsection 2.7.

2.4 MILP Formulation

The MILP formulations for the original TSP have
been developed by adding constraints for eliminat-
ing subtours in the assignment problem (Lawler
and Eugene, 1985). Unfortunately, these classical
MILP formulations are not directly applicable to
our variant of the TSP. The solution of our variant
of the TSP is an incomplete tour if we consider it
as a TSP with 2N cities (N cities with original
cost matrix and N cities with discounted cost
matrix). The compact subtour elimination con-
straints cannot be used to develop an MILP model
for the given problem.

An MILP model for the given problem can be
derived by modifying the assignment problem and
shown in the full version of this paper posted
on the web.(http://dot.che.gatech.edu/ Informa-
tion/research/issicl/FORCAPO2003CRL.pdf).

2.5 Heuristics

For the original TSP, many heuristics have been
developed to find suboptimal but “good” solutions
in reasonable amount of time for large N (> 106)
TSPs. For our TSP example, we consider two
heuristics to find suboptimal solutions. The main
idea behind the heuristics is to solve a TSP and
then modify the solution using a shortest path
problem to reflect the change in the cost matrix
that occurs after buying the coupon.

2.5.1. Heuristic 1 This heuristic can be de-
scribed by the following procedure and Figure 1.

(1) Solve the TSP with the original cost matrix
and obtain the optimal tour, set i = 1

(2) For the option of purchasing the coupon at
the ith city in the optimal tour, follow the
obtained optimal tour until the ith city

(3) Solve the shortest path problem with the
discounted cost matrix for the rest of the tour
after the ith city

(4) i = i + 1, while i ≤ N , repeat from 2.

Heuristic 1 determines the first part of the tour
from the optimal tour obtained from the origi-
nal cost matrix. The tour after purchasing the

Fig. 1. Heuristic 1

coupon is found by solving a shortest path prob-
lem through the rest of the cities. Heuristic 1
generates N different suboptimal solutions with
N different coupon buying locations for the N city
problem. Another N suboptimal solutions can be
obtained by inverting the optimal tour with the
original cost matrix and proceeding as before.

2.5.2. Heuristic 2 This heuristic follows the
same idea as in Heuristic 1 but we reverse the
sequence. That is, we first determine the optimal
tour for the regular TSP with the discounted cost
matrix. In this case, the tour obtained with the
discounted cost matrix gives the second part of
the suboptimal tour because the discounted cost
matrix is in effect after buying the coupon.

2.6 DP in the Sub-Set of the States

DP is shown in 2.3 as a solution method that
can guarantee the global optimum for this type
of problem. But DP is often not applicable to
practical problems due to the exponential growth
of the state space. In theory, the portion of the
state space that has to be visited by an “intel-
ligent” algorithm consists of just N states, those
on the optimal path, a vanishingly small fraction
of the overall state space. Identifying this subset
of states, without searching the state space, must
clearly be as intractable as solving the original
problem. However, finding some small regions of
the state space that might contain the optimal (or
very good suboptimal) subset and then searching
them rigorously, using DP, could prove to be a
tractable approach for large problems. The idea is
to use heuristics to identify the relevant regions of
the states and use the DP to “patch” these states
together. The proposed method in this section
describes how to obtain this relevant subset of the
states and find an optimal path of states within
the subset.

In subsection 2.5, two heuristics for the given
problem are developed based on the idea of first
fixing the stage at which the coupon is bought.
For many well-known types of combinatorial op-
timization problems, a large number of heuris-
tics can be and have been developed. Oftentimes,
certain heuristics can be modified by changing a



parametric description of them. For example, the
‘Nearest Neighborhood’ search (Winston, 1993),
a well known greedy algorithm for TSP, can be
parameterized by an explicit description of the
neighborhood operator.

The N city problem has N stages, thus from
one suboptimal solution, N visited states are
obtained. Since 4N suboptimal solutions can be
obtained from the two heuristics we introduced
earlier, at most 4N states get visited by these
heuristics at each stage. The same state can be
visited by different suboptimal solutions and this
will happen more frequently when heuristics that
exploit the problem structure in a similar manner
are used. The key idea of our method comes from
hypothesizing that the important states visited by
several reasonable heuristics can be put together
as a ‘good’ subset of the state space, within which
search for a ‘good’ solution can be conducted. The
reduction of the search space is often dramatic,
thus making the approach feasible for even very
large problems. For the given 10 city illustrative
example, the size of this subset of the states(101
states) is much smaller than the entire state
space (4612 states), which is used for the DP in
subsection 2.3. The DP in the subset of states
follows the same algorithms as the full DP, except
some of the states in adjacent stages cannot be
connected. We can state several features of this
approach.

(1) The original 4N paths guarantee that a fea-
sible solution exists.

(2) If no states can be connected from different
heuristics, the procedure will be no better
than the original heuristics.

(3) There is a chance of finding an improved
solution by connecting states in the subset
of states found by different heuristics.

(4) If the state space includes all of the states of
the global optimum solution, eventually DP
will lead to it – often in dramatically reduced
computational time.

The reduction of the state space to the subset vis-
ited by the two heuristics enables a considerable
reduction in the computational load compared to
the original DP.

2.7 Comparison of Solutions

For the illustrative example, 4 different solution
methods are proposed. Among these 4 solution
methods, the DP and MILP approaches can guar-
antee the global optimum solution. On the other
hand, the other two methods, the heuristics and
DP in the subset of the states are computationally
more tractable, even though they cannot guaran-
tee the global optimum solution. The comparison

of solutions by the four methods must be based
on two points, optimality of the solutions and the
computational time used to obtain the solutions.
However, comparing the MILP method with the
other methods is not appropriate because differ-
ent languages were used to pose and solve the
proposed MILP from the other solution methods.
The proposed MILP is solved by using CPLEX
7.0 in GAMS (Brooke et al., 1998) and MATLAB
is used for the other solution methods. Generally,
the speed of computing with MATLAB is much
slower than that with GAMS, which uses Fortran
as a base computational language. For this rea-
son, in table 1, we compare the computational
times for the three solutions obtained by MAT-
LAB only. However, it should be noted that the
computational time of solving the proposed MILP
with 0.01 error bound on same machine is 1015.0
seconds.

As a part of the two heuristics, one must solve
the original TSPs without the coupon buying op-
tion. For this purpose, a TSP solver is coded in
MATLAB with the simulated annealing algorithm
(Aarts and Korst., 1989). With a good initial
solution from the simulated annealing, a greedy
heuristic for the original symmetric TSP, the
Nearest Neighborhood Search (Winston, 1993),
can find the globally optimal or nearly optimal so-
lution for relatively small size(less than 100 cities)
instances of TSP. The simulated annealing algo-
rithm TSP solver starts its stochastic cooling from
a temperature of 60 until it cools down to 5 with
a reduction rate of 0.99. For most TSPs with less
than 50 cities, the TSP solver can find the global
optimal solution owing to the good initial solution
and the high temperature reduction rate(0.99).

DP
Solution

The Best
Heuristic

DP in the SSS+

Total
Traveling

Cost
416.34 432.54 422.78

Calculation
Time
(Sec.)∗

30546.8 8.80 8.8+1.8=10.6

+ Sub-Set of the States
∗ On a Pentium III at 800 MHz: 512MB RAM

Table 1. Solution Comparison

As we expected, the DP method finds the global
optimal solution and the other methods result
in suboptimal solutions. Table 1 highlights the
efficiency of the proposed method of perform-
ing DP within the subset of the states vis-
ited by the heuristics. The additional computa-
tional time for performing DP within the vis-
ited set is trivial because of the dramatically re-
duced state space. At the expense of small addi-
tional calculation time on top of the heuristics,
we can obtain a significantly improved solution.



Solution

Method

Traveling

Cost
Route

The Global

Opt.

DP or

MILP
416.34

1-10-8-4-2-6-
7-5-9-3-1

2nd Ranked
Soln

DP in
the SSS

422.78
1-10-8-2-6-7-
5-9-3-4-1

3rd Ranked

Soln
Enum+ 427.84

1-10-8-4-6-7-5-
9-3-4-1

4th Ranked

Soln
Enum+ 431.23

1-8-2-6-10-7-
5-9-3-4-1

5th Ranked

Soln
Heu∗ 432.54

1-10-6-2-8-5-
7-9-3-4-1

Italic Bold represents discounted tour
+ Solution method: Enumeration
∗ Solution Method: Heuristics

Table 2. Feasible Solutions between the Best Heuris-
tic Solution and the Global Optimum

Furthermore, we can see that the solution from
the DP in the subset of the states approach is
not that far from the global optimum in this par-
ticular example. To measure the quality of each
solution by different solution method, exhaustive
enumerations are performed. The best 5 feasible
solutions obtained by exhaustive enumerations of
all feasible solutions are shown in table 2 and
it turns out the solution by the method ranks
second.

3. CONCLUSIONS AND FUTURE STUDY

This paper has presented a new framework for
improving heuristics of deterministic optimization
problems. The key idea of the proposed method is
to perform DP in a subset of the states visited by
reasonable heuristics. To test the proposed math-
ematical framework a new variants of the deter-
ministic and stochastic TSP has been introduced.
This variant includes an optional task that change
the problem cost structure. Four different solution
methods,DP, MILP, heuristics and DP in the sub-
set of the states were applied to this problem.
The performance of these 4 solution method was
tested for a 10-city illustrative example. Among
the 4 solution methods, DP in the sub-set of the
states shows significant advantages in computa-
tional time and solution quality. The performance
of this method was also tested for larger examples
of the variant TSP that are computationally in-
tractable with other conventional methods. The
proposed method showed good performance in
these problems. An important extension to this
approach, and a subject of future work, is to de-
velop reasonable systematic methods for expand-
ing the subset of states that is searched via DP.
Finally, the basic idea of the proposed method,
solving optimization problem through the rigor-
ous search of a solution space that is comprised of
the states found by suitable heuristics is quite gen-
eral. We expect it can be applied to many types of

optimization problems, multi-stage, stochastic, or
multi-objective, as long as some initial heuristics
exist for their solution.

Note : A larger version of this paper with the
extension of the proposed method to a stochastic
problem can be found on following URL.
The paper also includes larger size(50 cities) de-
terministic TSPs with random parameter genera-
tion. (http://dot.che.gatech.edu/Information
/research/issicl/FORCAPO2003CRL.pdf)

REFERENCES

Aarts, E. and J. Korst. (1989). Simulated anneal-
ing and Boltzmann machines : a stochastic
approach to combinatorial optimization and
neural computing. 1st ed.. Wiley Press.

Bertsekas, DP. (1995). Dynamic Programming
and Optimal Control. Vol. 1,2. 2nd ed..
Athena Scientific.

Brooke, AN., D. Kendrick, A. Meeraus and R. Ra-
man (1998). GAMS : A User’s Guide. 1st ed..
GAMS Development Corporation.

Garey, M.R. and D.S. Johnson (1979). Computers
and interactability : a guide to the theroy of
NP-completeness. 1st ed.. W.H. Freeman.

Gooding, WB, JF Pekny and PS Mccroskey
(1994). Eunymerative approaches to parallel
flowshop scheduling via problem transforma-
tion. Computers and Chemical Engineering
18(10), 909–927.

Lawler, E.L. and L Eugene (1985). The Traveling
Salesman Problem : A guided Tour of Combi-
natorial Optimization. 2nd ed.. Wiley Press.

Pekny, JF, DL Miller and GK Kudva (1993).
An exact algorithm for resource constrained
sequencing with application to produc-
tion scheduling under an aggregate dead-
line. Computers and Chemical Engineering
17(7), 671–682.

Penky, JF and DL Miller (1991). Exact solution of
the no-wait flowshop scheduling problem with
a comparison to heuristisc methods. Comput-
ers and Chemical Engineering 15(11), 741–
748.

Winston, WL. (1993). Operations Research : Ap-
plications and Algorithms. 3rd ed.. Duxbury
Press.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 617
	02: 618
	header2: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	header3: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	03: 619
	header4: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	04: 620
	header5: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	05: 621
	header6: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	06: 622


