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Abstract 

Gasoline production often yields 60-70% of a typical refinery�s total revenue.  A tight control of 
blending operations, a key step in gasoline production, therefore provides a crucial edge to the 
profitability of a refinery.  A generalization also known as the pooling problem is used to model many 
systems with intermediate mixing (or pooling) tanks in the blending process (Audet et al., 2000).  The 
classical blending arises in refinery processes where feeds with different quality attributes (sulfur 
composition, density or octane number, or boiling point temperatures) and flow rates are mixed to 
obtain products of desired qualities.  Currently many blending applications are treated as extensions of 
linear blending models.  Successive linear programming (SLP) strategies are applied to handle the 
nonlinear elements, but have shortcomings in terms of robustness and time of convergence.  In this 
study we will compare and analyze numerical results of several large-scale gasoline blending models 
using current Nonlinear Programming (NLP) solvers LANCELOT, MINOS, SNOPT, KNITRO, 
LOQO and IPOPT.  Although qualitative arguments will be made, a numerical comparison to a SLP 
code will not be presented.  
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Introduction 

Gasoline blending problems represent large-scale 
multiperiod nonlinear programs with mass balance 
constraints, nonlinear blending properties, large-scale 
structure (particularly across multiperiods) and 
combinatorial aspects dealing with switching strategies 
etc.  In addition, blending systems are often encountered 
in other process industries e.g., chemical, pharmaceutical, 
cosmetics and food.   

Gasoline blending models often include nonconvex 
nonlinearities, which lead to the existence of several 

locally optimal solutions (Adhya and Sahinidis, 1999).  
Given the high volumes of sales of petroleum products, 
the global optimization of the pooling and blending 
process could lead to substantial savings in cost, resulting 
in higher profit margins.  Local solutions can also lead to 
significant improvements and they can be generated much 
faster, even for blend planning and scheduling 
applications.  Moreover efficient local solvers are often 
necessary components of a global optimization algorithm.     



Currently many blending applications are treated as 
extensions of linear blending problems.  Successive linear 
programming (SLP) strategies are applied to handle the 
nonlinear elements, but have shortcomings in terms of 
robustness and convergence. In particular, global 
convergence for SLP can be achieved with trust region 
strategies. However, quadratic convergence for SLP is 
only possible with vertex optima. Otherwise, the 
convergence rate is at best linear and is dictated entirely 
by adjusting the trust region, which must shrink to zero at 
the solution. On the other hand, conventional large-scale 
nonlinear programming (NLP) strategies (like SNOPT 
and MINOS) may not be well suited for these problems 
for the following reasons.  First, they are geared to 
optimization problems with few degrees of freedom, also 
known as superbasic variables (Gill et al., 1981); blending 
problems may have many superbasic variables.  Secondly, 
since they approximate second order information using 
quasi-Newton updates, the number of iterations for the 
NLP solver frequently grows polynomially with problem 
size.  Lastly, these NLP approaches do not provide a 
straightforward extension to handle discrete combinatorial 
elements in blending.  To overcome these limitations, we 
consider a novel full space barrier (or interior point) 
approach for this nonlinear problem also known as NLP 
solver IPOPT.  In addition, a novel filter line search 
strategy ensures convergence of the barrier problem.  In 
this study we also compare and analyze numerical results 
for several large-scale gasoline blending models using the 
NLP solvers LANCELOT (Conn et al., 1992), MINOS 
(Murtagh and Saunders, 1993), SNOPT (Gill et al., 
1997), KNITRO (Nocedal et al., 2000), LOQO 
(Vanderbei and Shannon, 1999), and IPOPT (Waechter, 
2002).   

AMPL a mathematical programming language, 
which provides automatic generation of first and second 
order derivatives of the Lagrangian function for the 
nonlinear problems, will be the interactive environment 
for solving these mathematical programming problems 
(Fourer et al., 1993).   

Information on the NLP solvers used 

Five of the various NLP solvers currently available 
(KNITRO, LANCELOT, LOQO, MINOS, and SNOPT) 
were chosen in order to compare the relative efficiency of 
IPOPT to the other solvers.  A brief summary of each of 
the NLP solvers will be given. 

In order to simplify the presentation of the IPOPT 
algorithm we assume that all variables have lower bounds 
of zero.  An assumption is made that the optimization 
problem (NLP) can be stated as: 
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The objective function f: Rn → R and the equality 
constraint   c: Rn → Rm with m<n are sufficiently smooth 
(i.e., their first derivatives must exist).  These bounds are 
replaced by a logarithmic barrier term, which is added to 
the objective term to give: 
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The barrier method solves a sequence of barrier problems 
for a decreasing µℓ of barrier parameters with 0lim =

∞→ ll
µ  

to increasing tighter tolerance ε ℓ with 0lim =
∞→ ll

ε .  

Under certain assumption it can be shown that a sequence 
of x∗ (µℓ )= 0 of Eqn. (2) (approximate) local solutions   
converges to a local solution of the original NLP of Eqn. 
(1) (Fiacco and McCormick, 1990).  Since the exact 
solution x∗ (µℓ )= 0 is not of interest for large values of µℓ, 
the corresponding barrier problem is solved only to a 
relaxed accuracy ε ℓ   with 0lim =

∞→ ll
ε .   

The NLP solvers LOQO and KNITRO both implement 
Interior Point methods (also known as barrier method) for 
solving nonlinearly constrained optimization problems.  
The small differences in these solvers lead to performance 
differences exhibited.  LOQO uses line-search merit 
functions whereas KNITRO uses trust-region merit 
functions to promote convergence.  The NLP solver 
SNOPT implements a Sequential Quadratic Programming 
(SQP) method for solving large nonlinearly constrained 
optimization problems whereas the NLP solver 
LANCELOT implements a trust-region minimization of 
bound constrained augmented Lagrangian functions using 
Newton's Method.  Lastly the NLP solver MINOS 
implements a reduced-gradient method with quasi-
Newton approximations to the reduced Hessian for 
linearly constrained problems. It also employs a 
sequential linearly constrained (SLC) algorithm derived 
from Robinson's method for nonlinear constraints to solve 
the NLP.  A classification of these NLP solvers is shown 
in Fig. 1.    
 

Figure 1.   Summary of NLP solvers               
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General Representation of a Blending Model 

The classical blending problems (Audet et al., 2000) 
are usually formulated as a linear program whereas the 
pooling problems have nonlinear terms and may be 
formulated as a bilinear program (BLP) as represented 
below:     
 

 
where indices i, j, k and t refer to crude, intermediate, 
products and time, respectively, and the variables f, q, and 
v are flows, tank qualities and tank volumes, respectively.  
The objective is derived through the input of the source 
pools and the output of the final pools.  Since the qualities 
blend nonlinearly, bilinear terms are introduced in the 
model and with that the computational time increases. 
Moreover, the qualities themselves are often nonlinear 
functions of the flow rates. 

  There were 3 categories of blending models that 
were formulated in this study.  The first category consists 
of 3 simple (1-day) models ( Haverly, 1978; Audet and 
Hansen, 1998; Audet et al., 2000) with the measure of 
difficulty seen in the increase in the number of blending 
tanks to the product tanks.  The second category consists 
of extending   the 3 simple (1-day) models to run on a 
multiperiod basis (100-days) and the third category 
applies the bilinear programming formulation on an 
industrial problem to run on a 10-day cycle. 

Numerical Results 

Results from IPOPT solver were tested on a Dual 
Pentium 800MHz running Linux.  Results from the others 
solvers were obtained from the NEOS solver's website. An 
initialization strategy was developed to reduce 
computational time. 

 
 

Figure 2.  Initialization Strategy   
       

Let: Haverly Model =HM 

       
       Audet & Hansen Model =AHM 
       Rehfeldt & Tisljar Model =RTM 
       Honeywell Model = IHM 
       number of variables =N 
       number of constraints =M 
       number of superbasic variables =S 

Table 1.   Results from Category I 

      HM Day 1 
N=15,M=10,S=3    # of iter          Obj. CPU (sec) 

LANCELOT 10 3200 0.03 
MINOS 3 3200 0.02 
SNOPT 4 3200 0 
KNITRO 15 3200 0 
LOQO 22 3200 0.001
IPOPT 26 3200 0 

      AHM Day 1 
N=20,M=13,S=3 # of iter Obj. 

    
CPU (sec) 

LANCELOT 8 576 0.03 
MINOS 3 576 0.02 
SNOPT 4 576 0.02 
KNITRO 19 576 0.05 
LOQO 22 576 0.08 
IPOPT 22 576 0.01 

     RTM Day 1 
N=46,M=35,S=17     # of iter Obj. CPU (sec) 

LANCELOT 10 3596 0.05 
MINOS 17 3596 0.02 
SNOPT 21 3596 0.04 
KNITRO * * * 
LOQO 24 3596 0.12 
IPOPT 17 3596 0.01 

* indicates maximum iteration exceeded 

Table 2.  Results from Category II 

      HM Day 100 
 N=1500,M=1000,S=300 

 
   # of iter     Obj. CPU (sec) 

LANCELOT  11 3200 0.57 
MINOS  381 3200 4.98 
SNOPT       134 3200 0.46 
KNITRO 18 3200      11.42 
LOQO 26 3200 1.55 
IPOPT 28 3200 1.78 

      AHM Day 100 
N=2000,M=1300,S=300    #  of iter    Obj. CPU (sec) 

LANCELOT  7    576 0.59 
MINOS       318    576 4.09 
SNOPT       108    576 0.51 
KNITRO        20    576      19.24 
LOQO 27 576 1.97 
IPOPT 30 576 4.00 
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Fix qualities. Drop  corresponding constraints

(N)LP solver 

Calculate qualities using flows from Phase I. 

NLP Solver 

Phase I solves 
for Flow rates

Phase II solves 
for the qualities

Unfix all qualities and restore all the constraints.



      RTM Day 100 
N=4600,M=3500,S=1700    # of iter     Obj. CPU (sec) 

LANCELOT  70    3596 1444.57 
MINOS 2209    3596 34.07 
SNOPT 1932    3596 6.07 
KNITRO **      **        ** 
LOQO       134    3596      72.82 
IPOPT        29    3596      15.21 

 ** indicates solver failure 

Table 3.  Results from Category III 

      IHM Day 1 
 N=1985, M=1585, S=1449 

# of 
iter. Obj. CPU (sec) 

LANCELOT 388 61.35  11736.26   
MINOS 2274 61.35        3.5 
SNOPT       **     ** ** 
KNITRO       37 100.3    157.87  
LOQO       *** *** *** 
IPOPT       25 61.35       3.05  
      IHM Day 10 

N=20826, M=16074 S=15206 
# of 
iter. Obj. CPU (sec) 

LANCELOT      ****    ****      **** 
MINOS       **     ** ** 
SNOPT       **     ** ** 
KNITRO       **     ** ** 
LOQO       *** *** *** 

IPOPT       65   26388 
   
11064.44 

**indicates solver failure; ***indicates primal/dual 
infeasible; ****indicates failure due to insufficient 
memory allocation 

Conclusions 

In category I, the results obtained were runs 
performed on 3 simple blending problems for a 1-day 
period.  These simple models were extended to run for 
100-days in category II.  Comparing the performance of 
IPOPT with the other NLP solvers, there was significant 
improvement in computational speed as seen in the above 
results.  In extending the model formulation to the 
industrial problem (Honeywell blending problem) in 
category III, there is improvement in computational speed 
when model is run for 1-day.  Extending the model to run 
on a 10-day period, we note that a large increase in 
computational time is observed; this results because some 
of the gradient constraints become linearly dependent and 
cause the KKT matrix to become singular.  Stabilized 
pivoting is implemented in IPOPT to treat this singularity. 
In addition, a preprocessing unit,  which is still under 
development, will be used to handle the degeneracy in the 
model.     

Future work will include incorporating component 
complementarity based models for discrete decision 
making in blending operations and this will include 
switching among the tanks as well as conditional relations 
in time.    Global optimization of the blending models will 
also be under study. 
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