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Abstract 
Our discovery of a compact closed-form solution to Hammerstein systems has led to the ability to quantitatively 
compare competing experimental designs.  This index is a quantitative measure of the information content in a 
design and is based on the D-optimality criterion. It is called efficiency in the statistical literature. This efficiency 
(ratio) shows the superiority of statistical design of experiments (SDOE) over the commonly used pseudo-random 
sequences (PRS) when modeling nonlinear dynamic processes.  The ability of SDOE to control for confounding of 
input effects and the times of input changes is reflected in its higher efficiency. 
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Introduction

The importance of accurate predictive models for 
optimal process operation and control is widely 
recognized.  For example, if an inaccurate model is used 
in a control strategy it could cause deterioration of control 
resulting in inferior product quality. Process modeling can 
be broadly divided in two categories: theoretical and 
empirical. The complexity and cost of development of 
theoretical models has limited their applicability. 
Empirical models, as they are generated from 
experimental data, have become more popular. The usual 
procedure to develop empirical models has been to select 
a model structure and obtain estimates of the model 
parameters using data. The nonlinear and dynamic nature 
of chemical processes complicates the task of model 
development.  In order to simplify the identification and 
estimation of nonlinear systems, block-oriented 
structures, which combine static nonlinear functions with 
a linear dynamics have been widely used (Billings, 1980 
and Haber and Unbehauen, 1990). 

Since, model identification relies heavily on data, 
ensuring high data quality is imperative. The experimental 
design has a direct bearing on data quality. The 
fundamental idea behind experimental design is to select 
an input sequence u(t) that minimizes some measure of 
the ultimate uncertainty in estimated results (Pearson and 
Ogunnike,1997). An optimal experimental design is one, 
which maximizes the information content of the output to 
estimate the unknown parameters. 

A commonly used design in process identification is a 
Pseudo-Random Sequence or PRS. The pseudo-random 
signals are periodic and deterministic signals generated 
from pseudo-random sequences, which have similar 
characteristics to purely random signals (Godfrey et al. 
1999).  One most commonly known and widely used 
design in the identification of linear system is the pseudo-
random binary sequence (PRBS). But since PRBS 
consists of only two levels, the resulting data does not 

provide sufficient information to identify nonlinear 
systems (Braun et al., 1999). To overcome this difficulty 
multilevel pseudo-random sequences are recommended. 
However, the PRS design with input changes at random 
times, cannot ensure that the collected information is 
sufficient for the estimation of all the significant effects in 
the model, e.g. bilinear effects. 

The main objective of this paper is to demonstrate a 
quantitative measure of experimental design efficiency to 
evaluate competing designs. To this end, we present more 
details on the efficiency in the next section. The section 
after that presents the closed-form exact solution (to a 
Hammerstein system) which facilitates the quantitative 
comparison. A case study is presented in the following 
section and finally we have the conclusions. 

Efficiency 

Efficiency has been used in statistical literature to 
quantitatively compare competing experimental designs, 
for nonlinear models, mostly in a steady-state setting 
(Bates and Watts, 1988 and Atkinson and Donev, 1992).  
It has commonly been based on the D-optimality 
criterion, which minimizes the general variance of the 
parameter estimates or in other words it minimizes the 
width of the confidence interval of the parameter 
estimates.   

Eq. (1) given below is used to calculate the efficiency: 
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where p is the number of parameters in the model, ND1 
and ND2 are the number of experimental points in Design 
1 and Design 2, respectively, and V is the derivative 
matrix for the nonlinear model with (N x p) elements and 
is defined in Eq. (2): 
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where δy/δθi is the partial derivative of the output, y with 
respect to the model parameters and measures the 
sensitivity of the process model to each of the parameters.  

Efficiency, given by Eq. (1), compares the 
information content of candidate designs under the a 
priori assumptions. The most efficient design will be the 
one with the largest determinant of VTV.  If the ratio is 
less that unity, Design 1 is inferior to Design 2 in terms of 
information content to estimate the process behavior. 
Taking the ratio of the determinant to the (1/p) power 
ensures that the efficiency calculated is based on the 
design size (N) and not on the model dimension, i.e. p. 
 The lack of continuous-time closed-form solutions 
for nonlinear dynamic systems has limited the 
applicability of Eq. (1). Our discovery of a compact 
closed-form exact solution to Hammerstein systems 
(Rollins et al., 2002) has provided a venue for utilizing 
efficiency to evaluate experimental designs. The details 
are presented next. 

Hammerstein System 

A true Hammerstein system is represented as a block-
oriented model consisting of a nonlinear static function 
followed by a linear dynamic block as shown in Figure 1. 
Since the static nonlinear map is unrestricted, addressing 
nonlinear and interactive effects is possible (Rollins, 
2002). 

 
 
 
 
 

 
 

Figure 1. General structure of a Hammerstein model 

The use of the Hammerstein representation to 
approximate physical systems in discrete-time has been 
widely studied (Eskinat and Johnson, 1991, Henson and 
Seborg, 1997, and Nelles, 2001). One disadvantage of 
using discrete-time models is that they are approximations 
of the Hammerstein system, which subsequently is an 
approximation of the underlying physical system. A 
continuous-time method would possibly eliminate one 
level of approximation. 

Rollins et al. (2002) presented a continuous-time 
approach, to characterize a Hammerstein system, which is 
based on an exact solution to this block-oriented system. 

Therefore they called it the Hammerstein Block-oriented 
Exact Solution Technique or H-BEST. 

For an input sequence comprising of step changes, 
given by Eq. (3) below,  
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and assuming that u(t) and y(t) are deviation variables, the 
Rollins et al. closed-form exact solution for the 
Hammerstein system is given by Eq. (4) below.   
For 0< t ≤ t1,  

)()}0({)( tgufty =                           
For t1 < t ≤ t2, 
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where v(t) = f(u(t)), G(s) = y(s)/v(s), g(t) = L-1{G(s). 1/s}, 
and L-1 is the inverse Laplace transform operator. 

A Simple Example 

A theoretical single-input, single-output (SISO) 
Hammerstein system is used to demonstrate the procedure 
for utilizing Eq. (1) in comparing experimental designs. In 
this example the static gain (or steady state) function has 
quadratic behavior and the dynamic function has first-
order dynamics as shown in Eq. (5).  
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For step changes in the input (see Eq. (3)), Eq. (4) 
now becomes: 
For 0< t ≤ t1, 
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For t2 < t ≤ t3,   
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For this example the numerical values for the model 
parameters a1, a2, and τ are chosen to be 1, 0.5, and 4, 
respectively. The derivative matrix V used to determine 
the efficiency of the two designs is presented in Eq. (7) 
below. 
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 The elements of the derivative matrix V are 
obtained by using the exact solution (i.e., Eq. (6)) and are 
shown in Eqs. (8) – (13).      
For 0< t ≤ t1, 
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For t1 < t ≤ t2,  
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 The two design methods that will be compared: 
SDOE and PRS, shown respectively in Figures 2 and 3. 
Both design sequences have three input levels, coded 
from low to high as: –1, 0 and 1. The SDOE input 
sequences used in this example are implemented as step 
tests. For the generation of the PRS, the difference 
equation provided by Ljung (1987) for the generation of 
PRBS was modified to obtain three input levels. Since 
different PRS can result in different response, several 
sequences of different order (n) were used to ensure that 
the efficiency values obtained were similar. Only one 
PRS is shown for space considerations. 

Figure 2. Input sequence for SDOE  

The data were sampled every two minutes and the 
elements of each row of the derivative matrix V at 

evaluated at the successive sampling times. The 
derivative matrix for a design, which runs for 60 time 
units, would have 30 rows (excluding initial conditions). 
Two different scenarios have been considered in this 
study.  

Figure 3. Input sequence for PRS (n=9) 

Scenario 1 

In the first comparison the time between step 
changes in the case of SDOE is sufficient to allow the 
process to essentially reach the new steady state. Steady 
state is assumed to be approximately reached at time 5τ, 
which is equal to 20 here. The length of each PRS was the 
same as that for SDOE (60 time units) to keep the 
experimental times equal. Table 1 presents the results for 
this scenario. This overall efficiency is evaluated by 
considering all the three columns in the derivative matrix 
and hence p = 3. The efficiencies for the PRS designs are 
quite low and lie between 6% – 15% as seen in the second 
column. Since the PRS designs never run long enough at 
any level for the response to reach steady state, they lack 
information to obtain accurate estimates of steady state 
parameters (a1 and a2). Their efficiency in estimating a1 
and a2 is explicitly evaluated by considering only two 
columns in the derivative matrix and hence p = 2. The 
efficiency values are presented in the last column of Table 
1. The efficiency of the PRS designs to estimate the 
steady state parameters lies between 5% – 10%. Thus, one 
can objectively evaluate competing designs and if one 
chose to use a PRS design, the best design (based on the a 
priori assumptions) could be selected from different 
candidate designs. 

Table 1. Efficiency of the PRS designs relative to SDOE. 

Efficiency = PRS/SDOE 
Design All parameters 

(p = 3) 
Steady-state only

(p = 2) 
  SDOE 1.0 1.0 

n=6 0.133 0.084 
n=7 0.095 0.104 
n=8 0.155 0.098 

PRS 

n=9 0.063 0.046 
Note: n refers to the order of the PRS. 
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Scenario 2 

In the second scenario, the effect of not allowing the 
outputs to reach steady state is studied for the SDOE 
designs. However, a shortening of the design time 
involves a penalty in terms of the loss of information 
needed to estimate model parameters and that is studied 
here. Often, when data are collected from a real 
experiment, the duration of the test is desired to be small. 
This example will quantitatively provide the extent of 
information lost when the test duration is reduced. 

The efficiency is used to compare similar designs 
with different time interval between the step changes. The 
interval between the step changes corresponds to various 
fractions of 5τ. We looked at SDOE designs with an 
interval of 8, 12, and 16 between step changes and total 
test duration of 24, 36, and 48 respectively. The process 
response reaches, respectively, 86%, 95%, and 98% of the 
steady state response. These designs are compared with 
the SDOE design shown in Figure 2. The decline in 
efficiency as the experiment duration is reduced is 
expected, as seen in Table 2. 

Table 2. Efficiency of SDOE designs of different duration 

Efficiency = Di/ D4

Design 
Interval 
between 

Step 
Changes 

Total 
Time 

% of SS 
reached All 

(p = 3) 
SS only 
(p = 2) 

D1 2/5τ 24 86 0.607 0.604 
D2 3/5τ 36 95 0.813 0.792 
D3 4/5τ 48 98 0.934 0.916 
D4 5/5τ 60 99 1 1 

Note: p refers to the number of columns in the derivative 
matrix, V. 

 It is interesting to note that the efficiency is roughly 
the same whether p = 3 or p = 2. The data needed to 
estimate the dynamic parameters are obtained early on in 
the experiment and therefore the estimation of dynamic 
parameters (e.g. τ in this example) is not significantly 
affected when the design length is shortened. The 
parameters in the steady-state model (e.g. a1 and a2) 
depend on steady-state data and if that data are not 
available, the loss of information is reflected in lower 
efficiencies of shorter tests. If experimental time were 
reduced to 60% of the longest design time, the efficiency 
would still remain at approximately 80%, as seen in Table 
2. Thus the efficiency can also be used as a tool to come 
up with more practical designs without sacrificing too 
much information. 

Closing Remarks 

This work presented a methodology to evaluate 
different experimental designs and consequently their 
ability to provide accurate estimates of parameters in 
nonlinear models. The procedure was described 
specifically for a Hammerstein system, where an exact 
closed-form solution gave us the tools necessary to use 
this methodology, which is based on D-optimality.  

It was demonstrated that SDOE is superior to PRS in 
the information it provides to estimate model parameters. 
This can be attributed to the fact that once the levels in a 
design have been fixed, they are maintained at that level 
so that process response reaches as close to the new 
steady state value as possible. On the other hand, PRS has 
the disadvantage that the input changes are random, so it 
cannot ensure if data close to steady state have been 
obtained.  

This work presents the preliminary results of the 
application of this methodology and a more 
comprehensive analysis is underway. We propose to 
extend this framework to a multiple-input, multiple-
output setting and to other types of block-oriented 
structures. 
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