
   

A MIXED INTEGER NONLINEAR OPTIMIZATION 
BASED APPROACH TO SIMULTANEOUS DATA 
RECONCILIATION AND BIAS IDENTIFICATION 

Tyler A. Soderstrom, ExxonMobil Chemical Company, Baytown, TX  77522 
David M. Himmelblau and Thomas F. Edgar∗ 

 Department of Chemical Engineering, The University of Texas at Austin, Austin, TX  78712-10062 
  
 

 
Abstract 

 
 The problem of data reconciliation and the detection and identification of gross errors, such as 

measurement bias, are closely related and permits a solution within a mixed integer optimization 
framework.  A mixed-integer linear programming (MILP) approach has been previously investigated by 
Soderstrom et al. (2001), where the process model was described by a set of linear equations.  This paper 
outlines an extension of that technique when the model contains only bilinear terms as well as general 
nonlinear ones, requiring the solution of a mixed integer nonlinear program (MINLP).  Several solution 
methods were compared including the outer approximation / equality relaxation algorithm implemented 
in GAMS, genetic algorithms, and Tabu Search.  These methods were tested on several challenging test 
problems, showing an improvement over other published methods for bias detection. 
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Introduction 

Plant data are often corrupted by random and gross 
errors, so it is beneficial to use data reconciliation 
techniques combined with physical models of the unit 
operations to estimate values of measurements consistent 
with material and energy balances.  Because plant 
models can be nonlinear and gross errors can be viewed 
as a 0-1 occurrence, methods based on mixed integer 
nonlinear programming would be useful to solve the 
complete problem.  We use a formulation where gross 
error detection and data reconciliation can be carried out 
simultaneously. 

Eqn. (1) gives a formal statement of the MINLP 
considered here.  This problem penalizes solutions with 
large absolute deviations from measured values and a 
large number of identified biases.  The formulation in 
Eqn. (1) does not explicitly contain the absolute value 
error, which prevents a single outlier from skewing the 
results or forcing a bias to be falsely identified.   

 

 
 

( )

( )
( )

( )
( ) ( )

1 1 1
, ,
, ,

1
min

s.t    

       

       0

    0

       1 0

    1 1

       0

       

h n n

lk lk l l
k l ll

l lk l lk lk

l l l

l l l

l l l l l l l

l l l l l l l l l

l l

l

i i i
i ik ik

B S
p n

p n w B

y p n

U B

U B

S U U B

S U U B U

S B

p

µ
δ σ

µ δ

δ

δ

δ ε ε

δ ε ε ε

= = =

Φ = − +

=

− − = −

− ≤

− − ≤

− + + ≤

− + + + ≤ +

− ≤

∑∑ ∑

f µ, x 0

, , 0   ,k lk l l ln B S binaryµ ≥ ∈

 (1) 

 
The p and n  variables represent positive and negative 
deviations, while the σ  and w  variables can be thought 
of as weighting factors.  The sign and existence of a bias 
are expressed through the binary variables S and B 



   
 
respectively.  The measured and unmeasured variables 
are represented by µ  and x  respectively.   

In Eqn. (1) Bl represents the existence of a bias in 
the lth measurement, and w1 is a weighting factor for the 
lth binary variable.  The weighting factor is a positive 
number chosen to change the importance of finding 
solutions with the smallest possible number of biased 
measurements identified.  As long as the weighting 
factor is chosen so that a bias of the minimum size 
considered would inflate the value of the objective 
function more than the weighting factor for the biased 
measurement, the solution is relatively insensitive to the 
choice.  Here the variable Ul  is a large number which 
can be viewed as an upper limit on the magnitude of bias 
considered.  The second set of constraints ensures that 
the magnitude of any bias will be zero if the associated 
binary variable is not activated.  The third set requires 
any bias to be of a certain magnitude before it is 
considered important.  The value of εl can be some 
scaling factor related to the precision of the 
measurement.  If the term, εl, is chosen such that the 
quantity of εl Ul is some fraction of the standard 
deviation of the measurement,  this would eliminate 
cases where a bias would be small relative to the 
measurement error. 

Conceptually the extension of the MILP method for 
simultaneous data reconciliation and bias 
detection/identification of linear models to nonlinear 
models is straightforward.   However, once nonlinear 
equations are introduced, the optimization problem, a 
mixed integer nonlinear program (MINLP), is a tougher 
class of problem whose solution technology is not as 
advanced or mature as for MILP. 

A general MINLP can have nonlinear terms in the 
objective and constraints, in both the continuous and 
discrete variables.  However, if the problem to be solved 
has specific features, often special algorithms exist that 
may be more successful at solving a particular problem.  
In this paper we compare three methods chosen to solve 
the MINLP.  

Outer Approximation / Equality Relaxation 

The Outer Approximation / Equality Relaxation 
(OA/ER) algorithm was proposed by Kocis and 
Grossman (1987) and is described in detail by Floudas 
(1995).  This algorithm is designed to solve MINLP 
problems where the integer variables only appear 
linearly in the objective and constraints.  The mixed 
integer bias detection problem is of this type and can be 
solved using an algorithm such as DICOPT++, which has 
an interface to GAMS. 

Genetic Algorithms 

The genetic algorithm (GA) is a common derivative-
free optimization technique which has been applied to a 
wide variety of both continuous and discrete problems.  

For this problem GA was used to search over 
combinations of the binary variables.  Once their values 
were fixed, the underlying NLP was solved.  Genetic 
algorithms are a population-based method so a number 
of solutions are retained and new solutions are generated 
from the existing population using a series of operations.  
The operations include selection, mutation and crossover 
(Reeves, 1997).  

Perhaps the most important part of using a genetic 
algorithm is choosing an encoding scheme.  In the data 
reconciliation / bias identification problem, there are two 
sets of binary variables.  The problem is set up such that 
the first set signifies whether or not a bias is present, and 
the second set determines the sign of the bias.  In order 
to avoid a solution uniqueness problem with the second 
set of binary variables, binary variables are encoded, and 
the constraints are selected to force a variable from the 
second set to have a value of zero if the corresponding 
member of the first set has a value of zero, thus 
achieving feasibility.   

A population member is produced by concatenating 
n bytes of length 2 and treating each byte as an element 
in the vector.  The byte in position i can be thought of as 
an ordered pair consisting of the associated binary 
variables for measurement i, chosen from the set κ .   

 ( ) ( ) ( ){ }0, 0 , 1,0 , 1,1κ ≡  (2) 

These bytes are chosen randomly to form an initial 
population.  Crossover and mutation can be easily 
specified such that the parent can only break at a 
location where two bytes join, thus all offspring will be 
feasible as well.  When mutations occur at a location, the 
mutation is chosen from the set κ  as well.  This will 
ensure that any mutation will produce potentially 
feasible combinations of binary variables as well. 

Tabu Search 

The Tabu Search (TS) method described by Glover 
and Laguna (1997) has a metaheuristic procedure, which 
directs a search method (e.g., a descent method) into 
regions that would remain unexplored with a traditional 
search algorithm.  TS can solve hard combinatorial 
problems because it allows for sequences of non-
improving moves and can easily break out of local 
minima while seeking the global optimum.  In this 
problem, the search portion was performed on the binary 
variables in (1) and the NLP solver was used to find an 
optimal solution for the continuous variables. 

Defining a neighborhood of the solution is very 
important because a TS evaluates several solutions in 
some neighborhood of the current solution, choosing the 
best one (but not necessarily the one with the lowest 
objective value).  Here a solution is a n×1 vector with 
each entry a “state” corresponding to a measurement.  
Each state has three possible combinations of binary 
variables (Bi,Yi) as shown in Eq. 2.  The neighborhood 



   
 
of a solution is defined as any solution generated from 
the current solution by changing the state of any single 
element. 

We now apply the three techniques discussed above 
on two examples from the literature. 

Nonlinear CSTR Example 

The system chosen to test the MINLP approach is an 
adiabatic CSTR used by Kim et al. (1997) to test another 
gross error detection method.  The reaction carried out is 
a first order reversible reaction with single species 
reactants and products.  It was assumed that all variables 
were measured and the measurements were independent 
with a standard deviation of 0.025 for the concentrations 
and 3.0 for the temperature.  As was done in Soderstrom 
et al. (2001), Monte Carlo simulation was used to test 
the performance of the method on nonlinear systems.  
The sign, location of the bias, and the magnitude were 
all varied randomly for each trial.  The magnitude of the 
bias was allowed to vary from 10% to 100% of the true 
value of the variable.  For each set of trials, the number 
of biased measurements was fixed at either one, two, or 
three. 

The same performance measures, overall power 
(OP) and average Type I errors (AVTI), were used to 
evaluate the performance of the MINLP method.  OP is 
a measure of the fraction of biases correctly identified 
and AVTI is related to the number of unbiased variables 
incorrectly identified as biased.  The results of a series of 
simulations are shown in Table 1.  

These results show a very high power for identifying 
the biased variable or variables correctly with very few 
false identifications as shown by the low value of the 
AVTI.  This example shows only the results of solving 
the problem using the OA/ER method.  A comparison of 
the other methods will be shown in the next example, 
which has a larger number of variables.  In several cases, 
when a misidentification occurred in a run, it was noted 
that the solver failed to find the combination which 
produced the lowest objective value.  This was verified 
by fixing the binary variables in the combination 
representing the true set of biased variables and solving 
the NLP. This occurrence increased as the number of 
binary variables increased. 

 
 
Table 1:  Solution for MINLP technique Using 

OA/ER GAMS Implementation 
Horizon 

Length 
# Biased OP AVTI 

10 1 0.960 0.01 
 2 0.915 0.03 
 3 0.923 0.07 
 
Because it is possible to bound the estimates, the 

MINLP method was compared to another bias detection 
method employing bounded estimates. These bounds did 

not force the solver to find a solution with a higher 
objective function than when less constrained, but 
usually the bounds prevented the solver from diverging 
and kept the solver on track on this highly nonlinear 
problem.  This same problem was used in a simulation 
study of the modified iterative measurement (MIMT) 
test using NLP techniques by Kim et al. (1997).   

In their formulation, the data reconciliation step of 
the method was solved with a NLP solver with bounds 
imposed on the estimates.  In their study, estimates of the 
measurements were bounded at ±20% of the true value.  
Even with these stricter bounds the MINLP method 
performs significantly better with a larger OP and 
smaller AVTI, as shown in Table 2.   

Table 2:  Comparison of MINLP and MIMT 

 MIMT MINLP 
# Biased 

Measurements 
1 2 1 2 

OP 0.87 0.87 0.96 0.92 
AVTI 0.08 0.31 0.01 0.03 

 
Both methods do a good job of identifying the 

correct biased measurement, however, the clear 
advantage of the MINLP method is the low number of 
Type I errors.   

Heat Exchanger Network Example 

The second example to test the performance of the 
various MINLP solution techniques, a heat exchanger 
network used by Albers (1994) for gross error detection 
tests, was examined.  A diagram of the system is shown 
in Fig. 1. 
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Figure 1:  Heat Exchanger Network 

The model of the system consists of steady state 
material and energy balances with the enthalpies of the 
various streams expressed as functions of the 



   
 
temperature, making the model nonlinear.  The values of 
the constants and measured variables as well as the 
standard deviation of the measurements are the same as 
in the article. 

As in the previous example, a series of Monte Carlo 
simulations were performed on this system using the 
OA/ER, TS, and genetic algorithm methods to solve the 
MINLP problem.  The sign, location of the bias, and the 
magnitude were all varied randomly for each trial.  The 
magnitude of the bias was allowed to vary from 10% to 
100% of the true value of the variable.  For each set of 
trials, the number of biased measurements was fixed at 
either one, three, or five. 

All methods involve solving NLP subproblems with 
a fixed combination of binary variables, so the same 
solver settings and bounds were used for all methods.  A 
horizon length of 10 was chosen and variable estimates 
were bounded to be ±50% of the true value.  The 
performance of the various methods is shown in Tables 3 
and 4. 

Table 3:  Comparison of Solution Methods 

Overall Power # of Biased 
Variables OA/ER Tabu Search GA 

1 0.97 0.97 0.91 
2 0.92 0.93 0.82 
3 0.94 0.91 0.73 

Table 4:  Comparison of Solution Methods 

Average Type I Errors (AVTI) # of Biased 
Variables OA/ER Tabu Search GA 

1 0.05 0.10 0.51 
2 0.16 0.26 0.59 
3 0.18 0.38 0.53 

 
Although both the OA/ER method and the TS 

clearly have the highest OP and lowest AVTI, there are 
other considerations, for example the TS requires many 
more NLP subproblems to be solved.  Typical results for 
the number of NLP's solved are shown in Table 5. 

Table 5:  Comparison of the Typical Number of 
NLP Subproblems Required 

Solution Method # NLP Subproblems 
OA/ER 4 

Tabu Search 362 
GA 1000 

 
The number of NLP subproblems was always the 

same because in this implementation the number of 
generations and population size was fixed.  The OA/ER 
method almost always converged within three major 
iterations after solving the relaxed problem.  The method 

showing the most variation was the TS.  The stopping 
criterion for the TS was the number of restarts without 
improvement.  After this limit was reached, the search 
was terminated.  This number must be chosen carefully; 
if it is too small, the search may end without finding the 
optimal solution.  The TS is a purposeful search and as 
long as the objective is improving between restarts, the 
search will continue.  The best performance of the 
method was obtained when the current best solution was 
used as the initial point upon restart. 

In a few cases, TS found a solution where OA/ER 
did not find the correct biases.  Normally, the optimal 
solution for TS was found within the first few moves. 
The initial combination of binary variables is obtained 
by rounding the binary variables in solution of the 
relaxed problem to the nearest integer.  Sometimes this 
does not always start the solution off in a neighborhood 
of the minimum and more iterations and restarts are 
required.  Non-improving moves are often accepted, 
allowing the search to break out of local minima.  

For all three methods, the computational tests 
showed that the minimum gross error size is fairly 
unimportant in practice and may be left out of the 
formulation.  The choice of the weighting factors for the 
binary variables has more of an influence.  If the active 
binary variable weighting factor is chosen so that its 
contribution to the objective is greater than the weighted 
measurement residuals contribution to the objective 
(until the residual is of a minimum size), there is less of a 
penalty for choosing the solution with lower gross errors 
identified.  This prevents a small magnitude gross error 
from being identified.  Setting the minimum size 
threshold really seems to improve the chances of finding 
the best solution.  Not changing the combination of gross 
errors identified leads to the smallest objective.  The 
search over the binary variables seems to proceed more 
efficiently when this is incorporated into the problem. 
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