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Abstract 

Univariate and multivariate statistical process control (USPC and MSPC) methods have been widely 
used in process industries for fault detection. However, their practicability and achievable performance 
are limited due to the assumptions that a process is operated in a steady state and that variables are 
normally distributed. In the present work, external analysis is proposed to distinguish from faults from 
normal changes in operating conditions. To further improve the monitoring performance, a new MSPC 
method based on independent component analysis (ICA) is proposed. The simulation results of a CSTR 
process have clearly shown the superiority of the proposed ICA-based SPC over USPC and PCA-based 
SPC, and also the usefulness of external analysis. 

Keywords 

Statistical process control, Fault detection, Independent component analysis, External analysis 

Introduction 

In the last decade or so, various multivariate statistical 
process control (MSPC) methods have been proposed 
(Kano et al., 2002a). The most well-known MSPC is 
based on principal component analysis (PCA). In PCA- 
based SPC (PCA-SPC), Hotelling T 2 statistic of principal 
components and the sum of squared residuals Q are 
monitored (Jackson and Mudholkar, 1979). PCA-SPC has 
been widely accepted in process industries. However, 
their practicability and achievable performance are limited 
due to the assumptions that a process is operated in a 
steady state and that variables are normally distributed. 
Operating conditions cannot be constant in many 
processes due to load changes, product grade transitions, 
or other causes. In the present work, external analysis is 
proposed to distinguish between faults in a process and 

normal changes in operating conditions. In addition, to 
further improve the monitoring performance, a new MSPC 
method using independent component analysis (ICA) is 
proposed based on the idea that extracting essential 
variables from measured variables and monitoring them 
will improve the monitoring performance. The 
effectiveness of ICA-based S.PC (ICA-SPC) integrated 
with external analysis is evaluated with its application to 
monitoring problems of a continuous-stirred-tank-reactor 
(CSTR) process. 

External Analysis 

In the present work, measured variables are classified into 
two groups. Variables in the first group cause changes in 



operating conditions, which should be distinguished from 
faults. Those variables are referred to as external variables, 
because they are given from the outside of a process as a 
feed flow rate, set-points of controllers, and so on. The 
other variables, classified into the second group, are 
affected by external variables and other disturbances. 
Those variables are called main variables. 

The external analysis was originally developed as a 
part of constrained PCA for enhancing the performance of 
PCA by using external information (Takane and 
Shibayama, 1991). In this section, it is shown that the 
external analysis can be used for removing the influence 
of external variables from operation data. 

Static External Analysis 

Consider a data matrix X consisting of k samples of m 
variables. For simplicity, each variable is assumed to be 
normalized. The data matrix X is described as X=[ H, G ], 
where G consists of external variables and H consists of 
main variables. The main data matrix H should be 
decomposed into two parts: a part explained by the 
external data matrix G and the other part not explained. 
For this purpose, regression analysis such as ordinary least 
squares and partial least squares (PLS) can be used by 
regarding external variables and main variables as inputs 
and outputs, respectively. A regression coefficient matrix 
C is determined so that the sum of squared errors or the 
squared Frobenius norm of an error matrix E is minimized. 
The error matrix is defined as E=H-GC. As a result, the 
main data matrix H can be decomposed into GC and E. 
Any SPC method can be used for monitoring the error part 
E, which is not affected by the external variables. 

Dynamic External Analysis 

When process dynamics cannot be ignored, the influence 
of changes in external variables cannot be removed from 
operation data by using static external analysis. In such a 
case, a dynamic model must be built. The simplest 
approach is the use of past measurements of external 
variables as inputs. Therefore, the main data matrix H and 
the external data matrix G are modified as follows: 

H : H  o :[hT(s) -.- hT(k-1) hT(k)] r (1) 

G = [ G  O G 1 ... Gs_ l] (2) 

Gi : [gT (s_i) "'" gT (k_i_l) gT"(k-i)~ (3) 

where s is the number of steps. That is, external data at 
total s sampling points, g(t), g(t-1), ..., g(t-s+l), are used 
for estimating main data h(t). This external analysis, 
proposed in this work, is referred to as dynamic external 
analysis. It is regarded as identification of an impulse 
response model. 

Independent Component Analysis 

ICA (Jutten and Herault, 1991) is a signal processing 
technique for transforming observed multivariate data into 
statistically independent components. In this section, an 
ICA algorithm and ICA-SPC (Kano et al., 2002b) are 
briefly described. 

Algorithm and Example of ICA 

It is assumed that each of m measured variables is given 
as a linear combination of n (<m) unknown independent 
components. The independent components and the 
measured variables are zero mean. The relationship 
between a measured-variable data matrix X and an 
independent-component data matrix S is given by X=SA, 
where A is an unknown full-rank matrix, called the mixing 
matrix. The basic problem of ICA is to estimate the 
independent-component matrix S or to estimate the mixing 
matrix A from the measured data matrix X without any 
knowledge of S or A. The practical problem of ICA is to 
calculate a separating matrix W so that components of the 
reconstructed data matrix Y, given as Y=XW, become as 
independent of each other as possible. 

Finding the local extrema of the fourth-order 
cumulant is equivalent to estimating the non-Gaussian 
independent components (Delfosse and Loubaton, 1995). 
In the present work, a fixed-point algorithm (Hyvarinen 
and Oja, 1997) is used to minimize or maximize the 
fourth-order cumulant. To perform ICA, measured 
variables are first transformed into uncorrelated variables 
with unit variance, because statistical independence is 
more restrictive than uncorrelation. This pretreatment can 
be accomplished by PCA, and it is called sphering or 
prewhitening. 

An example of ICA is shown in Fig. 1. Original 
variables are a sinusoidal variable and a random variable. 
These two variables s~ and s2 are transformed into 
measured variables x~ and x2. First, x~ and x2 are sphered 
by using PCA, and uncorrelated variables z~ and z2 are 
obtained. Then, to obtain independent variables y~ and y2, 
ICA is applied to zx and z2. Figure 1 clearly shows that the 
original variables can be reconstructed by ICA without 
any knowledge of the original variables or the mixing 
matrix. 

Monitoring of Independent Components 

The procedure of ICA-SPC is similar to USPC. That is, 
each independent component is monitored. If one or more 
of the independent component is outside the control limit, 
the process is judged to be out of control. 

In order to realize an advantage in using independent 
components for process monitoring, the fitness of control 
limits for monitored variables is illustrated in Fig. 2. The 
control limits for measured variables x~ and x2 are far from 
the region representing a normal operating condition 
because these variables are highly correlated. In Fig. 2 
(center), two types of control limits for the sphered 



variables zl and z2 are drawn. The control limits become 
rectangular when sphered variables are monitored 
independently. On the other hand, the control limits are 
integrated into an ellipse when sphered variables are 
monitored together. The fitness, however, is not perfect. 
This characteristic limits the achievable performance of 
PCA-SPC. On the other hand, the control limits perfectly 
fit the independent components Yl and Y2. Therefore, ICA- 
SPC functions better than the others. 
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Figure 1. A simple example of ICA. 
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Figure 2. The fitness of control limits for USPC 
(left), PCA-SPC (center), and ICA- SPC (right). 

Application: CSTR Process 

In this section, several SPC methods integrated with 
dynamic external analysis are applied to monitoring 
problems of a CSTR process (Johannesmeyer and Seborg, 
1999) to show the usefulness of dynamic external analysis. 

The CSTR process is shown in Fig. 3. The reactor is 
equipped with a cooling jacket. Operation data sets are 
generated from 13 operating conditions listed in Table 1. 
One hundred simulations are carried out in each case. The 
control limit of each index or variable is determined so 
that the number of samples outside the control limit is 1% 
of the entire samples while the process is operated under 
normal conditions. 
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Figure 3. CSTR with feedback control. 

Table 1. Faults and condition changes. 

Case Operation Mode 
N 

N1 
N2 
F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 

F10 

normal operation 
feed flow ra te -  step 
set-point of reactor temperature - step 
catalyst deactivation- ramp 
heat exchanger fouling - ramp 
dead coolant flow measurement 
bias in reactor temp. measurement - step 
coolant valve sticking 
feed concentration- ramp 
feed temperature - ramp 
coolant feed temperature- ramp 
upstream pressure in coolant l ine -  step 
downstream pressure in outlet l ine -  step 

Dynamic External Analysis 

In this case study, N1 and N2 are regarded as normal 
changes in operating condition, which should be 
distinguished from faults. Therefore, the reactor feed flow 
rate x5 and the setpoint of temperature controller x~0 are 
classified as external variables. The other eight variables 
are main variables. The results of dynamic external 
analysis are shown in Fig. 4. After the set-point (SV) of 
temperature Xl0 is increased stepwise at 40 min., the output 
(MV) of coolant flow controller x9 is manipulated, and the 
coolant flow rate x4 is decreased. As a result, the reactor 
temperature x~ follows its set-point xl0. Since this set- 
point change considerably affects process variables, it is 
judged to be abnormal if control limits are designed 
especially for the operating condition at the lower 
temperature. On the other hand, the fault detection speed 
deteriorates significantly if control limits are extended for 
judging both operating conditions to be normal. 

Figure 4 (center) shows that the influence of the set- 
point change can be removed from each measured variable 
by conducting the dynamic external analysis, and control 
limits fit variables nicely. In addition, control limits can 
be adjusted automatically for changes in operating 
conditions as shown in Fig. 4 (right). The time-variant 



control limits enable us to monitor measured variables 
directly. Small fluctuations in time-variant control limits 
are caused by changes in feed flow rate, which is another 
external variable. 
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Figure 4. The results of  external analysis. 

than the others. These results indicate that the judgment 
made by ICA-SPC is more reliable than by USPC or PCA- 
SPC. Higher reliability is an important characteristic of 
any monitoring method. In cases N1 and N2, changes in 
the feed flow rate and the set-point of reactor temperature 
should be judged to be normal, and the fault detection 
rates should be about 1% throughout the monitoring 
period because control limits are set as 99% confidence 
limits. In fact, the fault detection rates are sufficiently low, 
and it is confirmed that the influence of the external 
variables could be removed from all main variables. 

C o n c l u s i o n s  

In the present work, static/dynamic external analysis was 
proposed to distinguish normal changes in operating 
conditions from faults, and ICA-SPC was developed to 
further improve the fault detection performance. The 
advantages of PCA and ICA can be integrated into 
combined MSPC (Kano et al., 2002c). The proposed 
approach based on both external analysis and ICA will be 
a breakthrough in statistical process monitoring. 
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Figure 5. Time-series plots of  fault detection rate. 

Monitoring Results 

Figure 5 shows the fault detection rate in all cases except 
for case N. The fault detection rate is defined as the 
percentage (%) of the realizations in which each 
monitoring method detects the fault at each time step. 
Therefore, the best monitoring method is the one with the 
highest fault detection rate. In Fig. 5, each fault or 
operating condition change occurs at 5 min. 

In abnormal cases F1, F2, F6, F7, and F8, the fault 
detection rate with ICA-SPC is considerably higher than 
the others. In cases F4, F9, and F10, the fault detection 
rate reaches 100% within one or two steps. In cases F3 
and F5, the fault detection rate of USPC is much lower 

R e f e r e n c e s  

Delfosse, N., Loubaton, P. (1995). Adaptive Blind Separation of 
Independent Sources: A Deflation Approach, Signal 
Processing, 45, 59-83. 

Hyvarinen, A., Oja, E. (1997). A Fast Fixed-Point Algorithm for 
Independent Component Analysis, Neural 
Computation, 9, 1483-1492. 

Jackson, J.E., Mudholkar, G.S. (1979). Control procedures for 
residuals associated with principal component analysis, 
Technometrics, 21, 341-349. 

Johannesmeyer, M., Seborg, D. E. (1999). Abnormal Situation 
Analysis Using Pattern Recognition Techniques and 
Historical Data, AIChE Annual Meeting, Dallas, TX, 
Oct.31-Nov.5. 

Jutten, C., Herault, J. (1991). Blind Separation of Sources, Part 
I: An Adaptive Algorithm Based on Neuromimetic 
Architecture, Signal Processing, 24, 1-10. 

Kano, M., Nagao, K., Ohno, H., Hasebe, S., Hashimoto, I., 
Strauss, R., Bakshi, B.R. (2002a). Comparison of 
Multivariate Statistical Process Monitoring Methods 
with Applications to the Eastman Challenge Problem, 
Comput. Chem. Eng., 26, 161-174. 

Kano, M., Tanaka, S., Ohno, H., Hasebe, S., Hashimoto, I. 
(2002b). The Use of Independent Component Analysis 
for Multivariate Statistical Process Control, Proc. of 
Int'l Syrup. on Advanced Control of Industrial 
Processes (AdCONIP'02), 423-428, Kumamoto, Japan, 
June 10-11. 

Kano, M., Tanaka, S., Hasebe, S., Hashimoto, I., Ohno, H. 
(2002c). Combination of Independent Component 
Analysis and Principal Component Analysis for 
Multivariate Statistical Process Control, Proc. of Int'l 
Syrup. on Design, Operation and Control of Chemical 
Plants (PSE Asia 2002), Taipei, Taiwan, Dec. 4-6. 

Takane, Y., Shibayama, T. (1991). Principal Component 
Analysis with External Information on Both Subjects 
and Variables, Psychometrika, 56, 97-120. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 385
	02: 386
	header2: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	header3: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	03: 387
	header4: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	04: 388


