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Abstract 

This contribution deals with scheduling problems in flexible batch chemical processes with a special em-
phasis on their real-time character. This implies not only the need for sufficiently short response times, 
but also the burden of incomplete knowledge about the future. 
We propose the application of two-stage stochastic integer programming techniques within a model pre-
dictive framework, which allow for the explicit modeling of recourse actions. Motivated by a real-world 
example process, some essential prerequisites for modeling real-time scheduling problems are discussed, 
and characteristic features of master scheduling models are highlighted. Numerical experiments with a 
problem-specific solution algorithm demonstrate the applicability of the method. 
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Introduction 

In the processing industries flexible batch plants enjoy an 
increasing popularity, because they allow for rapid and 
cost efficient adaptations of the product supply to the cus-
tomers demands. Their considerable flexibility is reflected 
in a high combinatorial complexity of the scheduling tasks, 
i.e. the problem of (optimally) assigning processing steps 
to plant units over time. Characteristic features of schedul-
ing problems in the chemical industries are their complex 
constraints due to strong couplings concerning material 
and time and the often significant uncertainty about the 
future evolution of the process. 

An immense number of publications shows that 
mathematical programming provides appropriate and well-
founded methods to formulate and solve assignment prob-
lems (an overview is given by Reklaitis (1996)). However, 
the aspect of uncertainty has been neglected in most mod-
els, only a few papers address this issue (e.g. Balasubra-
manian and Grossmann (2000), Honkomp et al. (1997), 
Ierapetritou et al. (1995), Petkov and Maranas (1997), 
Sanmarti et al. (1997)). Virtually all uncertainty conscious 

models are based upon a defensive strategy, which avoids 
extensive rescheduling activities. 

In the following we present a stochastic programming 
approach, in which the need for recourse actions is not 
considered as a burden but as optimization potential. 
Based on a real-world example, a two-layer two-stage 
scheduling approach is sketched and numerical results are 
shown for the master level. 

An Benchmark Process 

The multi-product batch plant shown in Figure 1 is 
used to produce two types (A/B) of expandable polysty-
rene (EPS) in 5 grain size fractions each. The preparation 
stage and the polymerization stage are driven in batch 
mode whereas the finishing is done continuously. A po-
lymerization batch is produced according to a certain rec-
ipe (out of 10), which determines the EPS-type and the 
grain size distribution. The resulting mixture of grain sizes 
is buffered in one out of two mixing vessels and then con-



   
 

 

tinuously fed into the separation stages, which must be shut 
down temporarily if a minimal flowrate cannot be main-
tained. 

Figure 1. Flowsheet EPS-process 

Scheduling decisions to be made are: 1. timing and 
2. choice of the recipes of the polymerizations, 3. hold-ups 
of the mixing vessels, and 4. start-up- and shut-down-times 
of the finishing lines. They are subject to resource con-
straints and nonlinear equality constraints describing the 
mixing process. The objective is to maximize the profit 
calculated from revenues for satisfying customer demands 
in time and costs for polymerizations, start-ups/shut-downs 
of the finishing lines, inventory, and penalties for demand 
shortages. 

A distinct feature of this process is its significant un-
certainty. Endogenous disturbances (linked to process 
events) comprise polymerization times and yields; distur-
bances in the plant capacity and in the demand are re-
garded to be exogenous in nature. 

Scheduling Approach 

A reasonable approach to determine good decisions is 
a model predictive scheduling (MPS) strategy similar to 
model predictive control (MPC). The idea is to generate a 
sequence of scheduling decisions in advance, and to apply 
the first ones to the process. This scheme is repeated itera-
tively, such that making decisions and receiving informa-
tion follows alternately. A widely used concept is to com-
pute schedules for the entire horizon at each step, which 
ignores the potential of possible recourse decisions to 
compensate disturbances. 

Our vision is to model the multi-stage information and 
decision structure explicitly by means of multi-stage sto-
chastic mixed-integer programs (e.g. Birge and Louveaux, 
1997). The basic idea is to represent possible evolutions of 
the process by a tree of scenarios with branches at each 
stage of decisions. From the optimization, a tree of sched-
ules results, which are identical and immediately applica-
ble for the first stage only. 

Undoubtedly, a monolithic multi-stage model of a 
real-world process is usually intractable by standard 

mathematical programming algorithms within reasonable 
computing time. Instead, we approximate this problem by 
applying the following key ideas: 

1. Decomposition of the problem into a master 
and a detailed scheduling problem (MS/DS) 
according to Figure 2. 

2. Approximation of both problems by two-stage 
stochastic integer programs (2-SSIPs). 

3. Formulation of compact and efficiently solv-
able models; linearization of  the non-
linearities. 

4. Application of the decomposition algorithm 
from Carøe and Schultz (1999). 

guidelines operations

observation

disturbances
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Figure 2. Cascaded feedback structure 

Modeling Prerequisites 

Mathematical Framework 

For a linearized 2-SSIP with a finite number of scenar-
ios a deterministic equivalent can be stated as an MILP: 
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The 1st and 2nd stage variable-vectors x and y belong to 
polyhedral sets X and Y with integer requirements. The 
parameter Ω denotes the number of scenarios ω with corre-
sponding probabilities π. The constraints are formulated by 
means of the matrices T und W and the right hand side-
vector h of suitable dimensions. The classical objective is 
to maximize the expectation value over all scenarios com-
puted as a weighted sum of x and y subject to the weight-
ing-vectors c and q. 

Auto-Recourse 

For the problem at hand models for both scheduling 
problems were formulated on finite moving horizons of 
reasonable length (DS: 4-8 days, MS: 2-4 weeks). By shift-
ing the horizon, some of the former recourse decisions y 
become here and now decisions x. This auto-recourse, i.e. 
the property, that the same model is used throughout, gives 



   
 
rise to a uniform model structure over the entire horizon. 
Starting from a deterministic base model, a 2-SSIP with the 
classical or a more advanced optimality criterion can be 
formulated in a modular fashion. 

Scenario Definition 

According to the lengths of the horizons, the MS 
model reflects long-term uncertainties, i.e. demand and 
capacity, and the DS model reflects short-term uncertain-
ties (time and yield). For the EPS-process exogenous and 
endogenous corresponds to long-term and short-term, 
respectively. 

According to Eq. (1) the uncertainties are modeled by 
scenarios and their corresponding probabilities are fixed. 
Therefore, the base models have to be stated such that 
disturbances affect only parameters (not indices) and the 
probabilities do not depend on the decisions. Since the 
probability of an exogenous event only depends on the 
considered period length and for an endogenous event it 
depends on the number of process events, the probability 
space should be discretized wrt. time in the MS case and 
wrt. events in the DS case. 

Time Representation 

According to the demanded scenario definition, ap-
propriate representations of time are an event-driven grid 
with a fixed number of variable points of time for the DS 
problem, and a multi-period representation with fixed time 
intervals for the MS problem. Schulz (2001) realized an 
event-driven approach for the EPS process under the as-
sumption of certain data. 

The MS period lengths have to be chosen such that the 
probability of a disturbance is significant. A horizon of 10 
periods of 2 days is reasonable. The first 3 intervals are 
defined as the 1st stage, since the results serve as a guide-
line for the DS level and should not have a tree structure. 

Master Scheduling Models 

In line with the modular concept, the base models of 
the process and the costs and the optimality criterion under 
uncertainty are only loosely coupled and interchangeable. 
We restrict this exposition to the key ideas and refer to 
Engell et al. (2001) and Sand and Engell (2002) for more 
details. 

Process Models 

Scheduling decisions to be made on the master level 
are 1. the rough timing of start ups/shut downs of the fin-
ishing lines, 2. the rough timing of polymerizations and 3. 
the assignment of recipes. Given I fixed time periods i, the 
degrees of freedom are represented by the variables 

{ }1,0∈ipz  and INN
pir ∈ , which represent the operation 

mode of the finishing line p in i and the number of polym-
erization starts according to recipe rp in i, respectively. The 

relevant constraints are the capacity of the polymerization 
stage and of the finishing lines. It turned out that modeling 
the interaction between the periods is of major importance. 

Considering the constraint for minimal throughput of 
the finishing lines, the formulation for decoupled periods 
reads as follows (C - mixer levels, F - feed rates): 
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The technique to model the couplings is to constrain 
sums of periods (the non-linearity can exactly be lin-
earized): 
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The use of constraints (2) instead of (3) leads to more 
shut down-procedures if a finishing line is driven at its 
lower capacity limit and to significantly higher costs. 

Cost Models 

An essential target of profit oriented scheduling is to 
maximize the sales subject to demand and supply con-
straints. With +∈ IRM

pif  denoting the sales of product fp 

in i, +∈ IRB
pif  the demand and +∈ρ IR

pprf  the yield of 

fp according to a certain recipe rp, (4) defines the demand 
and the supply constraints, respectively: 
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A disadvantage of this formulation is the missing dis-
tinction between timely and late sales. To control the late-
ness, an index d represents delay intervals; the constraints 
then read as follows: 
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Optimality Criteria 

In multi-stage stochastic programs, any kind of uncer-
tainty is reflected in the objective function. The classical 
optimality criterion under uncertainty is the expectation 
value over all scenarios. However, this approach is not 
suitable for risk conscious decision making since the width 
of the probability distribution has no effect. A reasonable 
solution to this problem is to extend Eq. (1) by the mini-
mum risk criterion as follows: 
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The idea is to compute the probability that the profit 
falls below a threshold ε  by using binary indicator vari-
ables ωu  in a big- M  inequality, and to reduce the expec-

tation value proportionally. This extension fits into the 2-
SSIP framework and increases the model size only margin-
ally. 

Numerical Evaluation 

For the different approaches, the base models com-
prise about 102 to 103 variables and constraints. Table 1 
shows the number of (integer) variables and constraints for 
base models defined by their characteristic equations. 

Table 1. Data of base models 

char. Eqs. var. (int.) constr. opt. gap 
(2),(4) 244 (122) 194 2.4 % 
(3),(4) 264 (122) 479 3.9 % 
(3),(5) 634 (122) 679 2.7 % 
 
The stochastic extension mainly consists of the intro-

duction of scenarios and equality constraints for the 1st 
stage; the problem size approximately scales with the 
number of scenarios Ω . The 2-SSIP is solved by the de-
composition algorithm from Carøe and Schultz (1999), 
which uses CPLEX (2000) to solve base model-like sub-
problems. 

Mean optimality gaps for the sub-problems are given 
in Table 1 for 20s CPU-time on a SUN Ultra II 300. Due 
to its minor additional numerical cost, the more precise 
process model according to (3) is preferred to (2). 

The stochastic extension to 1000 scenarios leads to 2-
SSIPs with 106-107 variables and constraints. The classical 
formulation (Eq. (1)) with a cost model according to (4) 
can be solved with optimality gaps of less than 10 % in 8 h 

CPU time (SUN Ultra Enterprise 450). Preliminary ex-
periments with a reduced model illustrate the aspect of 
risk: Adding the minimum risk criterion leads to solutions 
with 20 % less risk while the expectation value is only 
reduced by 2 % and the numerical performance remains 
unaffected. 

Conclusion and Perspectives 

The results demonstrate that the master scheduling 
problem for a real-world process can be solved by two-
stage stochastic mixed-integer programming; studies on the 
detailed scheduling problem are under way. 
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