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Abstract 

This work introduces a MILP reactive scheduling framework for resource-constrained multistage batch 
facilities with multiple parallel units at each stage. The approach is based on a continuous time domain 
representation that takes into account the schedule currently in progress, the updated information on the 
old production orders still to be processed, new order arrivals, the present plant state and the limited 
availability of renewable discrete resources like processing units and manpower. Order due dates and 
sequence-dependent changeovers can also be considered. The proposed technique is able to generate 
updated schedules when unforeseen events like deviations in processing times, equipment breakdown or 
batch reprocessing occur. To avoid full-scale rescheduling, the approach just allows schedule 
modifications involving starting time shifting, limited resource reallocation and local batch reordering at 
any discrete resource. The rescheduling algorithm is iteratively performed to restore feasibility at 
minimum increase of the objective function. Performance measures like make-span or average order 
lateness can be used. A large-scale case study was successfully solved at low computational time.  
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Introduction

A dynamic industrial environment usually requires a 
constant updating of the production schedule in progress. 
Since unexpected events continually arise throughout the 
time horizon, some modifications in the proposed schedule 
must be introduced on a regular basis. Instead of 
performing full-scale rescheduling, it is better performed 
limited resource-task reallocation and local reordering of 
tasks at any discrete resource to regain feasibility at 
minimum additional cost. Consequently, one of the major 
differences between predictive and reactive scheduling is 
that a large fraction of the scheduling decisions already 
taken will remain the same or at most experience limited 
changes during the rescheduling process. This fact can be 
used to sharply reduce the batch rescheduling problem 
size. 

Previous work on batch scheduling mostly assumed 
that discrete renewable resources other than processing 

equipment are available in unlimited amounts. However, 
production tasks usually require renewable discrete 
resources like manpower, tools, etc., that are available in 
finite quantities. Sometimes, they severely limit the 
number of simultaneous processing tasks and, 
consequently, the production schedule found by applying 
those scheduling methodologies could become infeasible. 
In fact, such resource constraints force the sequential 
execution of some process operations leading to a 
significant increase in the schedule make-span or the 
overall tardiness. A few number of continuous-time 
predictive scheduling approaches for resource-constrained 
multistage batch facilities have already been published  
(Pekny and Reklaitis, 1998; Pinto and Grossmann, 1998). 
They generate optimal production schedules for the next 
time horizon even if limited amounts of discrete resources 
other than equipment are available. However, an industrial 

 
                                                           

 



 
 
environment continually changes and the original schedule 
must be re-optimized on a daily or hourly basis. Some 
work on reactive scheduling of batch processes without 
resource constraints has already been done. Hasebe et al. 
(1991) proposed a reordering algorithm to update the 
schedule of multiproduct batch plants involving parallel 
production lines with a shared unit. Two types of 
reordering operations, i.e. the insertion of a job and the 
exchange of two jobs, were just allowed. However, they 
should be performed one at a time, since otherwise the 
algorithm would become computationally expensive.  In 
turn,  Roslöf et al. (2001) developed an MILP reordering 
algorithm to improve a non-optimal schedule or update the 
current schedule by iteratively releasing and reassigning or 
resequencing a small number of jobs. Again, the 
simultaneous reordering of two or more jobs may produce 
a strong increase in the problem size.  

This work extends the MILP reactive scheduling 
approach for single-stage batch plants, introduced by 
Méndez and Cerdá (2001), to resource-constrained 
multistage batch facilities. The proposed MILP framework 
relies on three key elements: (a) separate handling of 
allocation and sequencing decisions; (b) a problem 
representation describing the processing task sequence at 
any resource through the full set of (direct/non-direct) 
predecessors for each task; (c) a uniform treatment of 
different discrete resources to define a common set of 0-1 
sequencing variables for all of them. In this way, a low-
size problem formulation allowing to perform multiple 
rescheduling moves at the same time has been derived. 
The approach was successfully applied to a real-world 
industrial case study. 

Problem Statement 

Given: (i) a multistage multiproduct batch plant with 
multiple parallel units j∈Js at each processing stage s;  (ii) 
the set of processing units j∈Js available at each stage s; 
(iii) the set of available discrete resources R other than 
equipment; (iv) the set of old production orders i∈Iold still 
to be completed, including those partially processed; (v) 
the new order arrivals i∈Inew; (vi) the sequence of 
processing stages s∈Si for each old/new order i∈I; (vii) 
the set of alternative units j∈Jis and discrete resources 
r∈Ris that can be allocated to each task (i,s); (viii) the 
changes in the plant state because of unexpected events 
like equipment breakdowns, worker absenteeism, etc.; (ix) 
up-to-date processing times, sequence-dependent setup 
times and unit-dependent resource requirements for every 
task (i,s); (x) the production schedule in progress, by 
providing the discrete resource items currently assigned to 
each task (i,s) and the processing task sequence at any 
available resource before rescheduling; (xi) the last 
processing stage already completed or currently in 
progress for old production orders at the rescheduling 
time; (xii) the expected completion times for ongoing 
processing tasks; (xiii) the set of production tasks that can 

be just locally reordered and the reordering extent during 
rescheduling; (xiv) the set of tasks (i,s)∈TA that can be 
reassigned to other resource items and the reallocation 
alternatives during rescheduling and (xv) the remaining 
time horizon.  

The problem goal is to reschedule old orders still to be 
processed and insert the new ones through the allowed 
rescheduling actions in such a way that all production 
orders are completed in time and every resource constraint 
is satisfied at minimum makespan.  

The Mathematical Framework 

The knowledge of the current production schedule 
becomes an important piece of information to be explicitly 
considered by the problem representation. The proposed 
mathematical framework describes the processing task 
sequence at every resource item by providing the full set 
of (direct/non-direct) predecessors for any task (i’,s’) 
through the sequencing variables Xis,i’s’. If the relative 
locations of tasks (i,s) and (i’,s’) assigned to the same 
resource item is frozen and task (i,s) is currently processed 
before, then Xis,i’s’ = 1. As a result, Xis,i’s’ is no longer a 
problem variable.  Moreover, dispatch rules like EDD or 
SPT rules can easily be embedded in the problem 
formulation. Let us assume that the relative ordering of 
tasks (i,s) and (i’,s’) should comply the EDD rule and di < 
di’. Then, Xis,i’s’ is equal to 1 and such a variable can be 
eliminated. In both cases, a problem size reduction is 
achieved.  

  
 Resource allocation constraints 

A single unit j∈Jis and the required amount of discrete 
resources like manpower should be assigned to every 
processing task (i,s). 
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where bisr is the amount of resource r  required by  (i,s). 

Sequencing constraints  

Let us assume that production tasks (i,s) and (i’,s’) 
belong to the set (Tnew ∪ TA). Then, sequencing 
constraints must be imposed on any pair of  tasks (i,s) and 
(i’,s’) only if they have been allocated to the same 
resource item  r∈Rs, i.e. Yisr = Yi’s’r = 1. If  task (i,s) is 
performed before task (i’,s’), i.e. Xis,i’s’ = 1, then constraint 
(3.1) will hold to ensure that task (i’,s’) begins after 
completing task (i,s). In such a case, the other sequencing 
constraint (3.2) becomes redundant. If instead task (i,s) is 
processed later (Xis,i’s’ = 0), then constraint (3.2) will be 



  
 
enforced to prevent from starting (i,s) before ending (i’,s’). 
Therefore, a single variable Xis.i’s’ is required to control the 
relative ordering of any pair of tasks (i,s) and (i’,s’) at the 
processing sequence of any shared resource item r.  
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Let us now assume that the processing tasks (i,s) and 
(i’,s’) belong to the set Told and both are  currently 
assigned to the same resource item r. Moreover, the 
reassignment of either one to an alternative resource item 
of the same type is not permitted. In such a case, three 
different cases can be defined: (A) The relative ordering of 
tasks (i,s) and (i’,s’) at the rth-processing sequence is 
frozen. Assuming that the task (i’,s’) is currently 
processed before, then  constraints (3.1) and (3.2) reduce 
themselves to: 
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Therefore, the related sequencing variables and one of the 
sequencing constraints are withdrawn from the problem 
formulation. (B) A dispatch rule has been embedded in the 
problem formulation to preordering tasks (i,s) and (i’,s’). 
This particular case is similar to the previous one and the 
relative ordering is known beforehand. If either one of the 
tasks or both belong to the set (Tnew ∪ TA), then the RHS 
of the related sequencing constraint will include the 
allocation variables Yisr. (c) The relative ordering of tasks 
(i,s) and (i’,s’) can be changed during rescheduling. In 
such a case, the last RHS term in both constraints (3.1) 
and (3.2) must be withdrawn. 

 Timing constraints 

 The starting time for every required task (i,s) can be 
computed as follows:  

TsiYptCS
isJj

isjisjisis ∈∀−= ∑
∈

),(                                         (4) 

TsiYrtS
isJj

jisjis ∈∀≥ ∑
∈

),(                                          (5) 

Moreover, the task (i,s+1) can never begin before the 
preceding task (i,s) has been completed. Then,  
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Problem objective function 

The problem goal is to minimize the make-span. 
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The Rescheduling Algorithm 

(1) Define the task sets Told, Tnew and TA ⊆ Told to be 
considered during the rescheduling process.  

(2) Allocate discrete resources to new processing tasks 
(i,s) and/or old tasks (i,s)∈TA currently assigned to 
resources no longer available because of equipment 
breakdown or operator absenteeism. The arrangement 
of processing tasks (i,s)∈(Tnew∪TA) is initially 
assumed to follow a specified dispatch rule embedded 
in the problem formulation, like the minimum slack 
time rule. Not only the dispatch rule controls the 
relative ordering of such tasks among themselves but 
also with regards to those required by old tasks 
(i,s)∉TA. During this step, the relative ordering of any 
pair of tasks (i,s)∉TA, at any resource item is assumed 
to be frozen. Therefore, the related sequencing 
variables are eliminated and the problem formulation 
just includes the allocation variables Yisr. Solve the 
resulting MILP model so as to minimize the order in-
process time.  

(3) Rearrange processing tasks allocated to the same 
resource item by allowing any pair of consecutive 
tasks to switch their locations at the processing 
sequence. During this step, resource reallocation is not 
permitted. A small-size MILP formulation just 
involving sequencing variables is so defined to 
improve the schedule found in Step (2).   

(4) Repeat iteratively Step (3) until no further 
improvement in the objective function is achieved.  

Illustrative Example 

The proposed rescheduling approach has been applied 
to a large-scale resource-constrained multiproduct batch 
plant involving 4 processing stages and 10 units. Problem 
data can be found in Pinto and Grossmann (1997). Twenty 
production orders are to be processed during the time 
horizon. No more than 6 units can be simultaneously 
operated since a single operator is required to run each 
unit and a crew of 6 operators is just available. Figure 1 
shows the original production schedule. It was found by 
following a solution strategy quite similar to the proposed 
rescheduling algorithm. The only difference is that Iold  
and IA are both empty sets and all production orders are 
included in the set Inew. Let us now suppose that the 
following unexpected events occurred at time t= 57 h: (i) 
two late orders O21 and O22, not included in the original 
problem, which are similar to orders O19 and O20, 
respectively, have arrived; (ii) unit E7 is no longer 



 
 
available because of equipment malfunctioning; (iii) the 
operator R6 is not at work because of sickness. As a result, 
a new unit is to be assigned to perform the third 
processing stage on production orders {O2, O4, O5, O11, 
O13}. In addition, a new operator is to be allocated to 
different processing stages on the production orders {O2, 
O5, O8, O9, O13, O14, O15, O17, O18, O20. The 
proposed rescheduling algorithm has been applied to 
restore feasibility at minimum cost. Figure 2 shows the 
revised scheduling after the resource allocation step. Next, 
the reordering step was iteratively applied until no further 
improvement in the objective function was achieved. 
Despite the processing tasks previously assigned to 
operator R6 imply a total processing time of 175 h, the 
schedule make-span just grows from 232 h to 304 h, i.e. 
an increase of 72 h. Table 1 shows the computational 
requirements and the best objective value at each 
rescheduling step.  

Conclusions 

A new MILP reactive scheduling algorithm has been 
developed to update the short-term schedule of resource-
constrained  multiproduct batch facilities.  

 

 
Figure 1. Schedule in progress 

Nomenclature 

Sets 
I  production orders 
Inew  late production orders to be inserted into the current 

schedule 
Iold  production orders belonging to current schedule 
T  production task (i,s) for every order I 
Tnew  production tasks (i,s) for late orders I 
Told  production tasks (i,s) still to be processed 
TA  production tasks (i,s) to be reassigned to alternative 

resource items 
J  processing units  
S  processing stages 
Si  sequence of stages for order i 
R  resource items other than equipment 

Parameters 
di  due date of order i 
ptisj  processing time for task (i,s) in unit j 
si 

l  last processing stage for order i 
τisi's'r  sequence-dependent setup time between task (i,s) 

and task (i',s') at resource r 
Variables 
MK  make-span 
CTis  completion time for task (i,s) 
STis  starting time for task (i,s) 
Xis i's'   binary variable denoting that task (i,s) is processed 

before (Xisi's' = 1) or after (Xisi's = 0) task (i',s' )  
Yisr  binary variable denoting that task (i,s) is allocated 

to resource item r 

Table 1. Model size and computational requirements 

binary vars, 
cont. vars, constraints 

objective 
function 

CPU 
timea 

123, 176, 3232 294.51 202.84 
a Seconds on Pentium III PC (933 MHz) with ILOG OPL 3.1/CPLEX 7.0 

 

  
Figure 2. Updated schedule 
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