
 * To whom all correspondence should be addressed

A MILP REACTIVE SCHEDULING FRAMEWORK
FOR RESOURCE-CONSTRAINED MULTISTAGE

BATCH FACILITIES

Carlos A. Méndez and Jaime Cerdá*
INTEC (UNL - CONICET)

Güemes 3450 - 3000 Santa Fe – ARGENTINA
E-mail: jcerda@intec.unl.edu.ar

Abstract

This work introduces a MILP reactive scheduling framework for resource-constrained multistage batch
facilities with multiple parallel units at each stage. The approach is based on a continuous time domain
representation that takes into account the schedule currently in progress, the updated information on the
old production orders still to be processed, new order arrivals, the present plant state and the limited
availability of renewable discrete resources like processing units and manpower. Order due dates and
sequence-dependent changeovers can also be considered. The proposed technique is able to generate
updated schedules when unforeseen events like deviations in processing times, equipment breakdown or
batch reprocessing occur. To avoid full-scale rescheduling, the approach just allows schedule
modifications involving starting time shifting, limited resource reallocation and local batch reordering at
any discrete resource. The rescheduling algorithm is iteratively performed to restore feasibility at
minimum increase of the objective function. Performance measures like make-span or average order
lateness can be used. A large-scale case study was successfully solved at low computational time.

Keywords

MILP model, Discrete resources, Reactive scheduling, Rescheduling algorithm, Multistage batch plants

Introduction

A dynamic industrial environment usually requires a
constant updating of the production schedule in progress.
Since unexpected events continually arise throughout the
time horizon, some modifications in the proposed schedule
must be introduced on a regular basis. Instead of
performing full-scale rescheduling, it is better performed
limited resource-task reallocation and local reordering of
tasks at any discrete resource to regain feasibility at
minimum additional cost. Consequently, one of the major
differences between predictive and reactive scheduling is
that a large fraction of the scheduling decisions already
taken will remain the same or at most experience limited
changes during the rescheduling process. This fact can be
used to sharply reduce the batch rescheduling problem
size.

Previous work on batch scheduling mostly assumed
that discrete renewable resources other than processing

equipment are available in unlimited amounts. However,
production tasks usually require renewable discrete
resources like manpower, tools, etc., that are available in
finite quantities. Sometimes, they severely limit the
number of simultaneous processing tasks and,
consequently, the production schedule found by applying
those scheduling methodologies could become infeasible.
In fact, such resource constraints force the sequential
execution of some process operations leading to a
significant increase in the schedule make-span or the
overall tardiness. A few number of continuous-time
predictive scheduling approaches for resource-constrained
multistage batch facilities have already been published
(Pekny and Reklaitis, 1998; Pinto and Grossmann, 1998).
They generate optimal production schedules for the next
time horizon even if limited amounts of discrete resources
other than equipment are available. However, an industrial

environment continually changes and the original schedule
must be re-optimized on a daily or hourly basis. Some
work on reactive scheduling of batch processes without
resource constraints has already been done. Hasebe et al.
(1991) proposed a reordering algorithm to update the
schedule of multiproduct batch plants involving parallel
production lines with a shared unit. Two types of
reordering operations, i.e. the insertion of a job and the
exchange of two jobs, were just allowed. However, they
should be performed one at a time, since otherwise the
algorithm would become computationally expensive. In
turn, Roslöf et al. (2001) developed an MILP reordering
algorithm to improve a non-optimal schedule or update the
current schedule by iteratively releasing and reassigning or
resequencing a small number of jobs. Again, the
simultaneous reordering of two or more jobs may produce
a strong increase in the problem size.

This work extends the MILP reactive scheduling
approach for single-stage batch plants, introduced by
Méndez and Cerdá (2001), to resource-constrained
multistage batch facilities. The proposed MILP framework
relies on three key elements: (a) separate handling of
allocation and sequencing decisions; (b) a problem
representation describing the processing task sequence at
any resource through the full set of (direct/non-direct)
predecessors for each task; (c) a uniform treatment of
different discrete resources to define a common set of 0-1
sequencing variables for all of them. In this way, a low-
size problem formulation allowing to perform multiple
rescheduling moves at the same time has been derived.
The approach was successfully applied to a real-world
industrial case study.

Problem Statement

Given: (i) a multistage multiproduct batch plant with
multiple parallel units j∈Js at each processing stage s; (ii)
the set of processing units j∈Js available at each stage s;
(iii) the set of available discrete resources R other than
equipment; (iv) the set of old production orders i∈Iold still
to be completed, including those partially processed; (v)
the new order arrivals i∈Inew; (vi) the sequence of
processing stages s∈Si for each old/new order i∈I; (vii)
the set of alternative units j∈Jis and discrete resources
r∈Ris that can be allocated to each task (i,s); (viii) the
changes in the plant state because of unexpected events
like equipment breakdowns, worker absenteeism, etc.; (ix)
up-to-date processing times, sequence-dependent setup
times and unit-dependent resource requirements for every
task (i,s); (x) the production schedule in progress, by
providing the discrete resource items currently assigned to
each task (i,s) and the processing task sequence at any
available resource before rescheduling; (xi) the last
processing stage already completed or currently in
progress for old production orders at the rescheduling
time; (xii) the expected completion times for ongoing
processing tasks; (xiii) the set of production tasks that can

be just locally reordered and the reordering extent during
rescheduling; (xiv) the set of tasks (i,s)∈TA that can be
reassigned to other resource items and the reallocation
alternatives during rescheduling and (xv) the remaining
time horizon.

The problem goal is to reschedule old orders still to be
processed and insert the new ones through the allowed
rescheduling actions in such a way that all production
orders are completed in time and every resource constraint
is satisfied at minimum makespan.

The Mathematical Framework

The knowledge of the current production schedule
becomes an important piece of information to be explicitly
considered by the problem representation. The proposed
mathematical framework describes the processing task
sequence at every resource item by providing the full set
of (direct/non-direct) predecessors for any task (i’,s’)
through the sequencing variables Xis,i’s’. If the relative
locations of tasks (i,s) and (i’,s’) assigned to the same
resource item is frozen and task (i,s) is currently processed
before, then Xis,i’s’ = 1. As a result, Xis,i’s’ is no longer a
problem variable. Moreover, dispatch rules like EDD or
SPT rules can easily be embedded in the problem
formulation. Let us assume that the relative ordering of
tasks (i,s) and (i’,s’) should comply the EDD rule and di <
di’. Then, Xis,i’s’ is equal to 1 and such a variable can be
eliminated. In both cases, a problem size reduction is
achieved.

 Resource allocation constraints

A single unit j∈Jis and the required amount of discrete
resources like manpower should be assigned to every
processing task (i,s).

)(),(1 TATsiY new

Jj
isj

is

∪∈∀=∑
∈

 (1)

)(),(TATsiYbY new

Jj
isjisrj

Rr
isr

isis

∪∈∀= ∑∑
∈∈

 (2)

where bisr is the amount of resource r required by (i,s).

Sequencing constraints

Let us assume that production tasks (i,s) and (i’,s’)
belong to the set (Tnew ∪ TA). Then, sequencing
constraints must be imposed on any pair of tasks (i,s) and
(i’,s’) only if they have been allocated to the same
resource item r∈Rs, i.e. Yisr = Yi’s’r = 1. If task (i,s) is
performed before task (i’,s’), i.e. Xis,i’s’ = 1, then constraint
(3.1) will hold to ensure that task (i’,s’) begins after
completing task (i,s). In such a case, the other sequencing
constraint (3.2) becomes redundant. If instead task (i,s) is
processed later (Xis,i’s’ = 0), then constraint (3.2) will be

enforced to prevent from starting (i,s) before ending (i’,s’).
Therefore, a single variable Xis.i’s’ is required to control the
relative ordering of any pair of tasks (i,s) and (i’,s’) at the
processing sequence of any shared resource item r.

(3.1))' '()'(:)(
)()','(),,()2(

)1(

''

''

'' ''''

ssandiioriiRRr
TATsisiYYM

XMSC

sisi

newrsiisr

sisisirsisiis

<=<∩∈
∪∈∀−−+

−+≤+τ

(3.2))' '()'(:)(
)()','(),,()2(

''

''

 ''''''

ssandiioriiRRr
TATsisiYYM

XMSC

sisi

newrsiisr

sisiisisrsisi

<=<∩∈
∪∈∀−−+

+≤+τ

Let us now assume that the processing tasks (i,s) and
(i’,s’) belong to the set Told and both are currently
assigned to the same resource item r. Moreover, the
reassignment of either one to an alternative resource item
of the same type is not permitted. In such a case, three
different cases can be defined: (A) The relative ordering of
tasks (i,s) and (i’,s’) at the rth-processing sequence is
frozen. Assuming that the task (i’,s’) is currently
processed before, then constraints (3.1) and (3.2) reduce
themselves to:

(3.3))' '()'(:)(
)','(),,(

''

''''

ssandiioriiRRr
TsisiSC

sisi

oldisisrsisi

<=<∩∈
∈∀≤+τ

Therefore, the related sequencing variables and one of the
sequencing constraints are withdrawn from the problem
formulation. (B) A dispatch rule has been embedded in the
problem formulation to preordering tasks (i,s) and (i’,s’).
This particular case is similar to the previous one and the
relative ordering is known beforehand. If either one of the
tasks or both belong to the set (Tnew ∪ TA), then the RHS
of the related sequencing constraint will include the
allocation variables Yisr. (c) The relative ordering of tasks
(i,s) and (i’,s’) can be changed during rescheduling. In
such a case, the last RHS term in both constraints (3.1)
and (3.2) must be withdrawn.

 Timing constraints

 The starting time for every required task (i,s) can be
computed as follows:

TsiYptCS
isJj

isjisjisis ∈∀−= ∑
∈

),((4)

TsiYrtS
isJj

jisjis ∈∀≥ ∑
∈

),((5)

Moreover, the task (i,s+1) can never begin before the
preceding task (i,s) has been completed. Then,

 }{:),()1(
l

issTsiSTCT siis ≠∈∀≤ + (6)

Problem objective function

The problem goal is to minimize the make-span.

 }{:),(l
issTsiMKCTis =∈∀≤ (7)

MKMin (8)

The Rescheduling Algorithm

(1) Define the task sets Told, Tnew and TA ⊆ Told to be
considered during the rescheduling process.

(2) Allocate discrete resources to new processing tasks
(i,s) and/or old tasks (i,s)∈TA currently assigned to
resources no longer available because of equipment
breakdown or operator absenteeism. The arrangement
of processing tasks (i,s)∈(Tnew∪TA) is initially
assumed to follow a specified dispatch rule embedded
in the problem formulation, like the minimum slack
time rule. Not only the dispatch rule controls the
relative ordering of such tasks among themselves but
also with regards to those required by old tasks
(i,s)∉TA. During this step, the relative ordering of any
pair of tasks (i,s)∉TA, at any resource item is assumed
to be frozen. Therefore, the related sequencing
variables are eliminated and the problem formulation
just includes the allocation variables Yisr. Solve the
resulting MILP model so as to minimize the order in-
process time.

(3) Rearrange processing tasks allocated to the same
resource item by allowing any pair of consecutive
tasks to switch their locations at the processing
sequence. During this step, resource reallocation is not
permitted. A small-size MILP formulation just
involving sequencing variables is so defined to
improve the schedule found in Step (2).

(4) Repeat iteratively Step (3) until no further
improvement in the objective function is achieved.

Illustrative Example

The proposed rescheduling approach has been applied
to a large-scale resource-constrained multiproduct batch
plant involving 4 processing stages and 10 units. Problem
data can be found in Pinto and Grossmann (1997). Twenty
production orders are to be processed during the time
horizon. No more than 6 units can be simultaneously
operated since a single operator is required to run each
unit and a crew of 6 operators is just available. Figure 1
shows the original production schedule. It was found by
following a solution strategy quite similar to the proposed
rescheduling algorithm. The only difference is that Iold
and IA are both empty sets and all production orders are
included in the set Inew. Let us now suppose that the
following unexpected events occurred at time t= 57 h: (i)
two late orders O21 and O22, not included in the original
problem, which are similar to orders O19 and O20,
respectively, have arrived; (ii) unit E7 is no longer

available because of equipment malfunctioning; (iii) the
operator R6 is not at work because of sickness. As a result,
a new unit is to be assigned to perform the third
processing stage on production orders {O2, O4, O5, O11,
O13}. In addition, a new operator is to be allocated to
different processing stages on the production orders {O2,
O5, O8, O9, O13, O14, O15, O17, O18, O20. The
proposed rescheduling algorithm has been applied to
restore feasibility at minimum cost. Figure 2 shows the
revised scheduling after the resource allocation step. Next,
the reordering step was iteratively applied until no further
improvement in the objective function was achieved.
Despite the processing tasks previously assigned to
operator R6 imply a total processing time of 175 h, the
schedule make-span just grows from 232 h to 304 h, i.e.
an increase of 72 h. Table 1 shows the computational
requirements and the best objective value at each
rescheduling step.

Conclusions

A new MILP reactive scheduling algorithm has been
developed to update the short-term schedule of resource-
constrained multiproduct batch facilities.

Figure 1. Schedule in progress

Nomenclature

Sets
I production orders
Inew late production orders to be inserted into the current

schedule
Iold production orders belonging to current schedule
T production task (i,s) for every order I
Tnew production tasks (i,s) for late orders I
Told production tasks (i,s) still to be processed
TA production tasks (i,s) to be reassigned to alternative

resource items
J processing units
S processing stages
Si sequence of stages for order i
R resource items other than equipment

Parameters
di due date of order i
ptisj processing time for task (i,s) in unit j
si

l last processing stage for order i
τisi's'r sequence-dependent setup time between task (i,s)

and task (i',s') at resource r
Variables
MK make-span
CTis completion time for task (i,s)
STis starting time for task (i,s)
Xis i's' binary variable denoting that task (i,s) is processed

before (Xisi's' = 1) or after (Xisi's = 0) task (i',s')
Yisr binary variable denoting that task (i,s) is allocated

to resource item r

Table 1. Model size and computational requirements

binary vars,
cont. vars, constraints

objective
function

CPU
timea

123, 176, 3232 294.51 202.84
a Seconds on Pentium III PC (933 MHz) with ILOG OPL 3.1/CPLEX 7.0

Figure 2. Updated schedule

References
ILOG OPL Studio 3.1 (2000). User´s manual. ILOG S.A. France
Hasebe, S., Hashimoto, I. and Ishikawa, A. (1991). Japan

Chemical Engineering. Japan, 24, 483
Méndez, C. A. and Cerdá J. (2001). Proceedings of the II Pan

American Workshop on Process Systems Engineering.
“CEPAC’2001”, September, Guarujá, SP- Brazil.

Méndez, C. A. and Cerdá J. (2002). Computer-Aided Chemical
Engineering, 8, 701.

Pekny, J.F. and Reklaitis, G.V. (1998). Proceedings of the Third
International Conference on Foundations of
Computer-Aided Process Operations, 91, Snowbird,
Utah.

Pinto, J. M. and Grossmann I. E. (1998). Annals of Operations
Research, 81, 433.

Pinto, J. M. and Grossmann I. E. (1997). Comput. Chem. Eng.,
21, 801.

Roslöf, J., Harjunkoski I., Björkqvist, J., Karlsson, S. and
Westelund, T. (2001). Comput. Chem. Eng., 25, 821.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 335
	02: 336
	header2: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	header3: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	03: 337
	header4: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	04: 338

