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Abstract 

Due to the lack of systematic reliability analysis, intuitive decisions can usually be made in planning 
process operations under uncertainty. We propose a new analysis and optimization framework to 
address this problem. By using the technique of probabilistic programming, the solution provides 
comprehensive information on profit as a function of the confidence level as well as its sensitivities to 
different uncertain variables. For operations under multiple uncertainties, the sources of risk that have 
the most significant impacts on the profitability can be identified. An optimal decision can be made, 
from which a suitable compensation between profit achievement and risk of constraint violation can be 
achieved. The approach is applied to problems of production planning, unit operations and inventory 
management. In particular, a novel closed framework for planning unit operations under open-loop 
uncertain disturbances is proposed and applied to a distillation column operation. 
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Introduction 

Intuitive decisions can be made in planning process 
operations due to lack of systematic reliability analysis. 
One may emphasize the danger of an accident in a process 
and makes a conservative decision which leads to a very 
low profit, but in reality the probability of taking place of 
the accident may be extremely small (e.g. 10-6). In other 
cases, due to profit expectations, an aggressive decision 
may be taken, which will probably result in constraint 
violations and lead to an accident, or frequent 
modifications of the operating point have to be made. A 
proper decision should be a compensation between values 
of profit and risk. Almost all previous studies on 
optimization under uncertainty for design and operation 
used the two-stage programming with recourse to deal 
with constraint violations. This method requires a model 
for the penalty function which however is not available in 
many cases.  

Probabilistic (chance) programming is a suitable tool 
for solving such problems (Prékopa, 1995). Its unique 
feature is that the resulting decision ensures the predefined 
probability of satisfying constraints. Studies on model 
predictive control using chance constrained programming 
have been carried out for linear processes (Schwarm and 
Nikolaou, 1999; Petkov and Maranas, 1997, Li et al., 
2002). Recently, a method to nonlinear chance constrained 
problems is proposed (Wendt et al., 2002).  

The aim of this work is to study the insight and 
significance of the relation between reliability and 
profitability for operations under uncertainty. The basic 
idea is to integrate the available stochastic information 
into the optimization of operations planning. Based on the 
method of probabilistic programming, efficient solutions 
are achieved to problems of production planning, unit 
operation and inventory management.  
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Production Planning 

Consider planning problems of profit maximization 
for processes shown in Fig. 1. The process produces 
several outflows by processing some inflows. The inflows 
consist of both raw materials as feedstocks and utilities. 
Some inflows and outflows can be taken as decision 
variables. The other inflows and outflows are uncertain. 
We may know their stochastic distributions or at least a 
range of values they may take based on historic data.  
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Figure 1. Processes for production planning 

 
Operations planning for such processes is to 

determine the decision variables so that the profit can be 
maximized and meanwhile the uncertain inflow 
availability as well as the uncertain outflow demand be 
satisfied. However, due to the existing uncertainties, we 
may not be able to ensure a 100% success of the planned 
operation. For production planning linear models are 
always used. Thus the optimization problem can be 
defined as a stochastic programming problem under single 
chance constraints 
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or a problem under a joint chance constraint 
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where IJ yu ℜ⊆ℜ⊆ ,  are vectors of input and output 
decision variables, while LK ℜ⊆ℜ⊆ ζξ ,  are vectors of 
stochastic inflows and outflows. )2()2()1()1( ,,, baba  are 
vectors with known parameters and yu cc ,  are price 
vectors of the input as well as output decision flows. Note 
that the uncertain variables do not appear in the objective 
function, since we have the obligation to follow their 
values and thus they have no impact on the profit at the 
solution. Based on the distribution of ζξ and , the 
constraints in (1) and (2) can be transferred into 
deterministic inequalities due to the inverse probability 

functions of the stochastic variables and the values of the 
defined confidence levels. They lead to an LP and an NLP 
problem, respectively. Let us consider a planning problem: 

 

0,0
,2,..

5.0Profitmax

21

32221121

21

≥≥
≤≤+≤+

+=

yy
yyyyyts

yy
ξξξ

     (3) 

 
where 

21 , yy  are decision outflows and 
321 ,, ξξξ  are 

uncertain inflows. The decision for the maximum profit 
should be made while ensuring the availability of the 
inflows. 

321 ,, ξξξ  are assumed having uniform, exponential 
and normal distribution (Fig. 2), respectively. Fig. 3 shows 
the profit under single and joint chance constraints. To 
analyze the sensitivity of the profit to the individual 
uncertain inflows, the profiles of single confidence values 
allocated by the optimizer are depicted in Fig. 4, where the 
joint confidence level is specified. The optimal decision 
will lead to a 100% confidence to 2ξ  in any case, i.e. the 
uncertain inflow 2ξ  will never be violated if the decision 
is implemented. One has to take some risk of violations of 
inflows 1ξ  and 3ξ . In particular, 1ξ  will be most probably 
violated. Thus it makes sense to use a middle buffer for 
the input 1ξ . It means that the result of probability 
analysis can be used for decision of choosing buffers. 
 
 
 
 
 

 
 
 

 
Figure 2. Density function of uncertain variables 

 
 
 
 
 
 

 
 
 

Figure 3. Profit under chance constraints 
 
 
 
 
 

 
 
 
 

Figure 4. Single and joint confidence levels 
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Unit Operations Planning 

At the stage of unit operations, in addition to follow 
the production plan, product specifications have to be 
emphasized. Compositions are usually not on-line 
measurable and thus not directly controlled (temperatures 
are often used as references). Moreover, the pressure and 
load restrictions have to be satisfied. Usually these 
variables are monitored but not controlled (open-loop), 
either. There exist some uncertain variables such as feed 
composition, recycle flows or atmospheric conditions 
which are additional disturbances to unit operations. The 
task of unit operations planning is to decide the setpoints 
for control loops, so that the purity specifications and 
safety restrictions are satisfied and the operation costs 
minimized. The optimal unit operation problem under 
single chance constraints can be formulated as 
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or under a joint chance constraint 
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where JJ yu ℜ⊆ℜ⊆ ,  are manipulated and controlled 
variables, LCM yx ℜ⊆ℜ⊆ ,  the unmeasured state and 
constrained outputs, and CLIM

ly  the value of the upper limit 
of the constrained output iy . Kℜ⊆ξ  is the uncertain 
inputs and LJMg ++ℜ⊆  the process model equations. Note 
the decision variables are not the controls u rather than the 
controlled variables y (setpoints). The controls have to be 
changed corresponding to the realized uncertain inputs. 
Thus they are stochastic variables and the expected value 
of the costs should be defined in the objective function. 
Since it is difficult to calculate their expected value, the 
objective function is replaced by ∑

=

J

j
jj y

1

min β , where 

jβ  is a weighting factor with a sign based on the relation 

of ju  and jy , because the cost minimization of the flows 
(controls) corresponds to the minimization or 
maximization of the setpoints of the controls. The 
controlled output variables y are closed-loop and thus can 
be positioned at their setpoints through manipulating the 
controls u. However, the outputs Cy  are open-loop but 
have to be constrained, under the uncertain disturbances. 
The solution of problem (4) or (5) provide the setpoints 
for the closed-loops which can achieve a desired 
compromise between optimality and reliability. This leads 
to a novel operation concept, i.e. control of an open-loop 
process under uncertainty by using closed-loop control. 

We take a distillation column with 20 bubble-cap 
trays to separate a methanol-water mixture as an example. 
The feed flow F, composition fx  and atmospheric 
pressure P  are considered as uncertain disturbances, with 
their mean and standard deviation as 

l/h, 3,l/h 20 == FF σµ  %mol30=
fxµ , %mol3=

fxσ  

and 1013mbar,=Pµ  mbar5=Pσ , respectively. The 
optimality requires the column to be operated right at the 
specified product purity (99mol%), so its energy 
consumption is minimized. The temperatures ( SS TT 183 , ) on 
the sensitive trays are selected as the controlled variables. 
However, ensuring a constant temperature can not ensure 
the required purity, if the pressure changes due to swing of 
atmosphere and vapor/liquid load. A conservative 
operation with a much lower top setpoint and a much 
higher bottom setpoint has been used so far, which leads 
to a much greater reboiler and condenser duty than 
necessary. 

The chance constrained optimization problem has the 
objective function )(min 318

SS TT −  subject to a rigorous 
model composed of component and energy balances, 
vapor-liquid equilibrium and tray hydraulics for each tray 
and the chance constraints for the product purity. Fig. 5 
shows the optimal setpoints for the two controllers by 
different confidence levels. The top temperature should be 
decreased and the bottom temperature increased if a higher 
confidence level is required. It is interesting to note that 

ST3  is less sensitive to the disturbances than ST18  is. This is 
because the top temperature is almost only affected by P, 
while the bottom temperature is influenced not only by P 
but also by F and fx . As shown in Fig. 6, a greater 
reboiler duty (expected value) is needed if the required 
confidence level is higher. It can also be seen that the 
increase of the reboiler duty is higher in the region of high 
confidence levels (e.g. 97.0≥α ). 
 
 
 
 
 
 
 

     
 

 
Figure 5. Optimal setpoints for the two controllers 

 
 
 
 
 
 
 
 

 
 

Figure 6. Expected reboiler duty profile 
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Inventory Management 

Buffer tanks are commonly utilized to dampen 
variations of flows. If the size of buffers is large enough, 
the storage volume can be utilized for optimization. 
Several future time periods can be considered and allocate 
different storage in different time periods. The situation in 
industry is that buffers tend to be sized via intuition and 
experience. There are hidden buffers of materials and 
capacity as people protect themselves from uncertainty 
(Shobrys & White, 2000). Consider processes described 
by Fig. 1 and suppose there is a buffer for each uncertain 
inflow before feeding to the process and for each outflow 
before supplying to the customer. The reliability of the 
operation is now the guarantee of ensuring the storage 
inside the lower and upper limit of the buffer capacity. 
The optimal planning problem for multiple periods under 
single chance constraints is 
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where t∆  is the length of one time period and n is the 
index for period n. )(),( nMnM lk

ζξ  are the amounts of 
storage for feed k and product l of the period n in the 
corresponding buffers, respectively, while ζξ

00 , lk MM  are 
the initial charges of the buffers. The meanings of the 
other symbols are the same as in section 2. If the uncertain 
variables are normally distributed, the problem can be 
readily addressed (Prékopa, 1995), since a linear 
transformation of Gaussian variables also results in 
Gaussian variables. 

We consider a planning problem as shown in Fig. 7. It 
has 2 processing units, a mixer and 3 buffers. There are 
two demand uncertainties ( 21,ζζ ) and one supply 
uncertainty ξ . The two feed flows to the units ( 1u , 2u ) 
and the outflow y are the decision variables. 12 periods are 
considered. In each period, the uncertain flows have a 
normal distribution. For instance, Fig. 8 shows 100 
samples of ξ . Given the prices of the control flows and 
the confidence levels ( nni 01.099.0)( −=α ) to hold the 
buffer capacity ( 900100 ≤≤ iM ), the operation policy 
can be gained by solving the problem. Fig. 9 shows the 
future holdup of tank 1 by the optimal control under 100 

samples of ξ , 21,ζζ . It can be seen that there may be 
violations during the 4th to 8th periods (lower bound) and 
the 8th to 12th periods (upper bound) by the open-loop 
policy. These can be prevented by the method of moving 
horizon. 
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Figure 7. A plant for inventory management study 
 
 
 
 
 
 
 
 

 
  

Figure 8. 100 samples of the feed flow to tank 1 
 
 
 
 
 
 
 
 

 
 

Figure 9. Holdup profiles of tank 1 
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