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Abstract 

This paper is concerned with problem formulation and solution procedure for production planning and 
inventory management of systems under uncertainties. Having continuous dynamics intertwined with 
discrete-event interventions, the production system is modeled by finite-state continuous-time Markov 
chains. Discretizing the Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions and 
using an approximation procedure yield the optimal solution. The inventory problem under consideration 
is formulated by a Markov Decision Process (MDP) model. The optimal policy is obtained by using the 
policy-improvement algorithm. 
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Introduction 

Production planning and inventory management have 
attracted growing attention in recent years. Numerous 
papers have been published (see, e.g., Applequist et al., 
1997, Balasubramanian and Grossmann, 2002, Bassett et 
al., 1997; Gupta et al., 2000, Pekny and Miller, 1990, 
Petkov and Mararas, 1997 among many others). For 
optimization problems under uncertainty, two most 
important characteristics (Bertsekas, 1976) not present in 
their deterministic counterpart are the need of considering 
risks in the model formulation and the possibility of 
information gathering during the decision process. This 
work concerns problem formulation, numerical algorithms, 
and solution procedure for production planning and 
inventory management under uncertainties. By 
incorporating different kinds of uncertainties into the 
mathematical model and by constructing a multi-period 
decision process, we seek the optimal policy that 
minimizes the expected costs over a given time span. 

Production Planning 

Many systems contain continuous dynamics 
intertwined with discrete events or subject to discrete-event 
interventions, which lead to jump discontinuity in their 
evolution. To better understand and more effectively deal 
with uncertainties from various sources require stochastic 
models that can characterize the unique feature of each 
major event in such hybrid systems. 

There is a rich literature on both theory and 
computational algorithm development for manufacturing 
systems under uncertainties; see, e.g., Akella and Kumar 
(1986), Bertsekas (1976, 1987), Gershwin (1994), Sethi 
and Zhang (1994), Yin and Zhang (1997,1998) and the 
references therein. In this work we adopt a class of 
continuous-time, finite-state stochastic models to describe 
the dynamics of such hybrid systems. We provide the 
dynamic programming equation, and present numerical 
scheme that leads to an approximation of the optimal 
policy. The objective function used includes both 
production and holding costs and can be easily extended to 
include other costs. We consider two types of uncertainty, 
demand and production capacity, and formulate them using 
finite-state Markov chains. Such an approach allows us to 
quantitatively describe the random and jump behavior that 
is common in many stochastic systems. 

Problem Formulation 

Consider a manufacturing system that produces r 
different products. Let ut ~ R r denote the production rates 
that may vary with time and the state or capacity of the 
machine. Therefore ut -- 0 and is subject to the random 
production capacity that is a random process. With the 
total surplus (the inventory/shortage level) xt ~ R r and the 
random demand rate zt 6 R r, the system is given by 
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/~, = u ,  - z ,  x 0 = x ,  (1)  

where x~ W is the initial surplus level. 
We consider the cost functional J defined by 

J(x,o~,u(-), z) = E~o e-Pt[h(xt ) + c(ut )]dt (2) 

where p > 0 is the discount rate, h(-) represents the holding 
cost, c(-) denotes the production cost, and x, o; and z are 
the initial surplus, the initial capacity, and the initial 
demand, respectively. The expectation E is taken over both 
random machine capacity and random demand. We seek 
the optimal production rate, ut, to minimize the objective 
function (2), subject to dynamics described by (1), the 
capacity c~ (t), and certain production constraints and the 
given initial conditions. 

Specification of Demand and Capacity Processes 

Denote the set of the values of demand by 
Z={zl,...,za}. Assume that the demand process z(t) ~ Z 
and that the transitions among the states are random. The 
production capacity o~ (t) is also a random process having 
state space M={ al,.. . ,  on}. Suppose the transition between 
the states of production capacity may depend on the 
production rate ut. Now we face a joint stochastic process 
(~ (t), z(t)). 

It is conceivable that at any given time the production 
capacity determines the set of all possible rates of 
production, ut. For each state of the capacity, a 1 <_ a 1 _ t~ 
(1 < 1 < m), without loss of generality, denote the set of 
production rate constraints by L/i, Then the production rate 

at time t is subject to the constraint ut ~ L/~ (t). 
We further assume that the random processes of 

demand rate z(.) and capacity a (.) are both finite-state 
continuous-time Markov chains. Consider the demand 
z(t)~ Z to be governed by a generator Qd = (qd.); a d×d 
matrix. To model the dependence of t~ (t) on the 
production rate, let t~ (t) E M be governed by an 
infinitesimal generator Qm(u) that depends on production 
rates; Qm(u)  = (qm O (U)) is an mxm matrix. Let r m = { U = 

=(ul,...,um): U 1 e Ui.}. The two Markov chains, (z (-)and 

z(-), are generated by Qm(u) and Qa, respectively, i.e., for 
any functions 0 on M and ~ on Z, 

QmO(.)(j) = ~,jl~jqm. (uj)[O(jl)_O(j)],  
:Jl (3) 
d 

Qdu/(')(J) = 2 j l , j q  [N(Jl) - N(J)]" 
JJl 

Let A denote the set of all admissible controls. Our 
objective is to find an admissible feedback control policy 
u(.) ~ A that minimizes the cost function J(x; c~, u(.), z). 

System of HJB Equations 

Define the value function v(.) as the minimum of the 
cost over u(-) ~ A,  i.e., 

v (x ,a , z )  = i n f  J(x,  a ,  u(.), z). (4) 
u(-)~ A (a,z) 

The use of Markov chains results in a total of IM] 
value functions. With a dynamic programming approach, it 
can be shown that the value functions are convex and 
satisfy the Hamilton-Jacobi-Bellman (HJB) equations (see 
Fleming and Rishel, 1975; Sethi and Zhang, 1994): 

p v(x, a ,  z) = ra in  {(u - z).  Vv(x, a ,  z) + [k(x) 
u~r (5) 

+ C(U)]} + Qmv(x,.,z)(a) + Qdv(x,a,')(z) 

where x ~ R r, of E M, z E Z, a.b denotes the inner product 
of the vectors a and b, Vf(x) is the gradient o f f  

Solving (5) leads to the optimal production policy u*. 
Similar to many other controlled Markovian systems, the 
closed-form solution of the HJB equations is difficult or 
even impossible to obtain. Therefore, we resort to 
numerical procedure. 

Numerical Proceclure for the Optimal Policy 

Using the numerical methods developed in Kushner 
(1990) and Kushner and Dupuis (1992) (see also Yin and 
Zhang, 1998), we discretize (5) by discretizing the space 
R r with grid A > 0, which yields a discrete space Ra r. Let 
{el}i=1 r=  {el, ..., er} be a standard basis for the Euclidean 
space R r. Using A as the step size, we approximate the 
value function v(x; a; z) by a sequence of functions 
vA(x;a;Z); and its partial derivatives Vxj (x; a; z) by the 
corresponding finite differences, then write the HJB 
equation (5) in terms of v(x; a; z): This newly obtained 
equation can be expressed in the form 

A 
v,+ 1 (x, z, a )  = F(VnA+I (x, z, a)). 

The value function can be approximated by the value 
iteration procedure. Starting from an initial value of x and 
an arbitrary initial guess va0, the procedure calls for 
repeated iterations until certain convergence criterion is 
satisfied. 

Applications 

The models and numerical algorithms were applied to 
a papermaking process. Using real demand data collected 
from a large paper manufacturer, we obtained the midterm 
production plans for different situations. The optimal 
strategies obtained allow us to make production decisions 
sequentially throughout the process lifespan. 

I n v e n t o r y  M a n a g e m e n t  

We are interested in inventory policies capable of 
handling situation of random demand and periodical 
replenishments. Observing the randomness and regularity 
in the inventory process, we choose to describe it with 
discrete-time finite-state Markov chains, and use Markov 



decision process (MDP) model to determine the optimal 
policy. 

products measured by weights, we can discretize them as 
described above. 

State Space and Transition Probabilities o f  the Markov 
Chain 

To establish the mathematical model requires 
specifying the key elements of the discrete time Markov 
chain, which entails designating its state space and 
prescribing the dependence relations among the random 
variables based on the real process data. 

Let dl; d2;...represent the successive demands for a 
particular product. Assume that dn are i.i.d, random 

variables whose future values are unknown. Let X ,  

denote the stock of the product on hand at the end of the 

nth period. The states of the stochastic process, { X n }, 

consist of the possible values of its stock size. The amounts 

in stock, X o , X  1,..., constitute a Markov chain whose 

transition probability matrix is determined by the demand 

and the replenishment policy. If X ,  is a continuous 

random variable, we may discretize it via certain 
transformation to simplify the solution procedure. The 
resulting discrete random variable, An, also indicates the 
level of the stocks but takes values in M = { 0,...,m }. Such 
discretization allows us to model this inventory system by 
an (m + 1)-state Markov chain. 

To completely define a Markov process {AT,} requires 
specifying its initial state and its transition probability 
matrix P = ]] Pu I1-For the inventory management problem, 
the former is usually available, whereas the latter is 
affected by the random demand as well as the 
replenishment activities. 

Decisions, Actions and Policies 

The inventory system evolves over time according to 
the joint effect of the probability laws and the sequence of 
decisions and actions. It fits to the general finite-state 
discrete-time Markov decision processes. The stock on 
hand is recorded at the end of each period. Subsequently, a 
decision is made and an action is taken. The question 
needs to be answered is which decision should be chosen 
at any given time and state. An inventory policy is a rule 
that prescribes decisions to be made for each state of the 
system during the entire time period of interest. 
Characterized by the values {80(R), 81(R),...,Sm(R)}, any 
policy R specifies decisions 8i(R) = k, (k = 0, 1, ..., K); for 
all states i, (i = 0, 1, ..., m), at every time instant. We want 
to choose a policy that minimizes the long-run expected 
(average) cost. 

A policy R requires that the decision 80(R) be made 
whenever the system is in state i. Effected by this policy as 
well as the random demand, the system will move to a new 
state j according to the corresponding probabilities Pij. For 
countable items, the determination of the transition 
probability matrix is relatively straightforward. For 

Markov Decision Process 

The evolution of the system is affected by the random 
demands as well as the replenishment activities governed 
by the inventory policy. Let Xn be the state of the system at 
time n; let A n be the decision/action chosen. Under any 
fixed policy R; the pair I1, = (AT,, An) forms a two- 
dimensional Markov chain. For a given feedback policy, 
the decision 8i(R) = k is prescribed for every state i = 0, 1, 
..., m. Consequently, when the system is in state i and the 
policy R is used and an action based on the decision 8i(R) 
= k is excised, the probability of its moving to state j at the 
next time period Po can be obtained. Starting from Xo, the 
realization of the underlying stochastic process is Xo, 
X1,..., and the decisions made are Ao, A1 . . . . . .  Note that An 
= 8xn (R) ~ {0, 1, ..., K} if the feedback policy is used. 
The sequences of observed states and decisions made are 
the so-called Markov Decision Process. 

The Long-run Expected Cost 

We seek the optimal policy in the sense that it will 
minimize the (long-run) expected average cost per unit 
time. It should be noted that another consideration in 
practice is that the policy should be relatively simple and 
easily implementable. Suppose a cost Cx,6, is incurred 
when the process is in state X, and a decision An is made. 
A function of both Xn = 0, 1, ..., m, and An = 0, 1, ..., K; 
Cx, s, is also a random variable. Its long-run expected 
average cost per unit time over a period of N is 

1N-1 m K  

l i m - -  Z E[CxnA n ] = ~, ~,gikCik (6) 
N---~oo N n=0 i=0k=0 

where rtik is the stationary (limiting) probability 
distribution associated with the transition probabilities. 

The Policy Improvement Algorithm 

We resort to the Policy-Improvement Algorithm in 
this work to seek for the optimal policy. Let g(R) represent 
the long-run expected average cost following any given 

policy R, i.e. g(R) = ~_m n i = o ~ i C i k  . Denote vi (R) the total 

expected cost of a system starting in state i and evolving in 
a period of length n. By definition, it satisfies the following 
recursive formula 

m ?/ 
V i (R)  = Cik q- 2 eo ( k ) v ~  "-1 ( R ) .  

j=O 
(7) 

Note that Ci~, the cost incurred in the first time period, 
is also an expected cost. It can be shown that (Hillier and 
Lieberman, 1999) for i = 0, 1 . . . . .  m 

m 
g(R) = Cil c - vi(R) + ~,Po.(k)vj(R). 

j=O 
(8) 



For a system of m + 1 states, Eq. (8) consists of m + 1 
simultaneous equations but m + 2 unknowns, g(R) and 
vi(R) (i = O, 1, ..., m). To obtain a unique solution, it is 
customary to specify vm(R) = 0: Solving the system of 
equations (8) yields the long-run expected average cost per 
unit time g(R) if the policy R is used. An optimal policy is 
one that results in the lowest cost g(R*). A policy 
improvement algorithm allows us to obtain the optimal 
policy. The procedure begins by choosing an arbitrary 
policy R1. For the given policy R/, the transition 
probabilities Pij(k) are available hence the expected costs 
Cik(R1) can be computed. Subsequently, the values of 
g(R1), v0(R1); vI(R1); " " ", Vm_l(R1) can be obtained from Eq. 
(8). In the second step, the current values of vi(R1) are used 
to find an improved policy R2. Specifically, for each state i, 
choose such decision 6i(R2) that makes the right-hand-side 
of Eq.(8) a minimum, 

~i(R2 ) = arg mink {Ca, (R2) - vi(R 1 ) 

(9) 
+ ~P0.(kRz)Vj(R1) } foralli,  

j=0 

where arg mink ilk) is the value of k ~ { 0, 1, ..., K} that 
minimizes ilk). The set of the best decisions for all states (i 
= 0, 1, ..., m) constitute the second, or the improved policy 
R2. Repeating this iteration procedure until the two 
successive R's are the same. 

Applications 

Those outlined above have been applied in the 
determination of inventory policy for a large paper 
manufacturer. Using real customer demand data, we have 
shown (Yin et al., 2002) that the MDP model consistently 
yields better policies than the traditional replenishment 
ones. In general, it results in lower average inventory level 
and/or lower stockout and requires fewer reorders to be 
placed. 

Summary 

In this paper, we formulate production planning as a 
stochastic control problem driven by Markovian noise. 
Stochastic differential equations are used to describe the 
system dynamics. To quantify the stochastic and jump 
behavior, we model the random demand and capacity 
processes with two finite-state continuous-time Markov 
chains. The long-run expected cost is considered in our 
formulation. The numerical procedure designed requires 
discretizing the original functional space and 
approximating the value function by its discretized version. 
The iteration results provide us with the optimal 
production rates under different situations. 

We resort to Markov decision process models for 
decision making in the inventory management stage. It 
requires designating the possible decisions and the 
corresponding actions taken, identifying the Markov 
decision model related to the underlying system by 

defining its state space and the transition probabilities, 
specifying the cost function and evaluating its individual 
component, and then using the policy improvement 
algorithm to obtain the optimal policy. 
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