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Abstract 

Over the last few years, the simultaneous optimisation of the product portfolio and manufacturing 
capacity has gained increased importance in the Pharmaceutical Industry. The problem of capacity 
planning under clinical trials uncertainty for the pharmaceutical industry has recently been addressed in 
the literature. However, there is a need for better solution approaches, as when the potential product 
portfolio increases, existing models become extremely large and very difficult to solve. Here, a scenario 
aggregation/disaggregation approach for this problem is presented. The results from the proposed 
flexible approach are compared with those obtained from a detailed stochastic, multistage, multiperiod 
model.  
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Market pressures, tough sociopolitical regulations and an 
aggressive competitive environment are among the factors 
of today's world that are changing the way in which 
pharmaceutical business is operated. The pharmaceutical 
industries are faced with the question of the best use of the 
limited resources available to obtain the highest possible 
profit from the selected product portfolio. Thus, they are 
being forced to consider more systematic approaches to 
optimise their potential product portfolio. 

During the optimisation of the product portfolio of a 
typical pharmaceutical company we must take into account 
first of all the product characteristics that make it a suitable 
candidate for manufacturing. Among those there are the 
R&D cost associated with the development of each new 
product, potential outcomes of ongoing clinical trials, 
commercial details of each product (e.g. demand forecast, 
price, marketing expenses), the lifetime cycle of each drug, 
etc. The management of manufacturing capacity must also 

be considered. This is concerned with the allocation of 
existing capacity for the selected product portfolio and 
decisions concerning additional investments that may be 
required to satisfy future demands (Papageorgiou et al, 
2001). 

The problem of optimisation of the product portfolio 
and manufacturing capacity subject to a certain source of 
uncertainty (e.g. demand, clinical trials), has been 
addressed in the literature (Rotstein et al. (1999), 
Maravelias and Grossmann (2001)). An optimisation-based 
approach has already been described (Gatica et al., 2001) 
capturing the above issues so as to select simultaneously 
the optimal capacity planning and investment strategy 
subject to uncertainty of clinical trials for each potential 
drug. Four possible clinical trial outcomes (High success, 
Target success, Low success, Failure) for each product are 
considered as is typical in the industry. As these outcomes 
have different probabilities of occurrence and the 



 

 

information from the trials will become available at 
different times resulting in a multistage, multiperiod 
stochastic optimisation problem, which is then 
reformulated as a large-scale, multi-scenario, mixed integer 
linear programming (MILP) model. As the resulting 
detailed model is quite large to tackle, an alternative 
efficient solution strategy is required without 
compromising the quality of the final solution. A scenario-
based aggregation/disaggregation procedure with a multi-
level aggregation scheme is presented here. This approach 
is based on the detailed stochastic multistage model 
described by Gatica et al. (2002). 

The scenario tree in Figure 1 represents a  four product 
portfolio, 1 deterministic, 3 potential products (with four 
clinical trial outcomes). For this case, the last stage 
comprises 64 scenarios. 

Figure 1. Tree map for all scenarios and stages 

The aggregation/disaggregation approach is described 
in the next section. 

Scenario Aggregation Algorithm 

The procedure used here is based on the scenario 
aggregation approach described by Samuelsson (1999). As 
seen from Figure 2, the algorithm groups the scenarios into 
predetermined clusters.  

Each cluster is composed by a series of NO 
neighbouring scenarios, where NO is the number of 
possible outcomes of the clinical trials considered; four for 
the present case (o1,o2,o3,o4), representing different types 
of success and failure. In every case, the grouping must 
follow the scenario mapping given by Figure 1. Thus, the 
groups of two consecutive stages are not related if there is 
no direct link between scenarios within those stages. As 
can be noticed, the scenario aggregation takes place within 
each stage, however it can involve one or more stages. The 
algorithm gives the possibility of choosing the desired 
level of aggregation, that is, how many stages are going to 
be aggregated. Based on the original tree, Figure 3 shows 
how these clusters are configured for a second aggregation 

level (Level 2), in this case involving stages 3 and 4, 
rendering a 1-4-4-16 reduced scenario tree. 

Figure 2.  General aggregation scheme 
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Figure 3.  Aggregation for stages 3 and 4 

 



   
 

The demands and probabilities within a cluster are 
changed for each stage according to Equations 1-3. The 
new probability is the cumulative probability of the 
scenarios included in each group. Their demands are 
adjusted by taking into account the average of the clinical 
trial outcomes for those scenarios.  
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The flow diagram for this the scenario aggregation 
algorithm is shown in Figure 4.  

Figure 4.  Scenario aggregation algorithm 

First, a multiscenario aggregated problem is generated 
according to equations 1–3. Then a series of reduced 
problems are solved by applying stage dissagregation 
iteratively. In particular, the reduced multistage stochastic 
problem is solved based on the new scenario tree (reduced 
scenarios) to determine the binary decision variables of the 

non-aggregated stages. Each reduced scenario is then 
disaggregated and the resulting tree is solved to find the 
optimal decisions of the aggregated stages, based on the 
binary decision variables of the previous stages. If the 
problem is still too large, the scenarios of the previous 
stage might be aggregated again, until a solution is 
obtained. It should be noted that as the scenarios are more 
aggregated a faster solution can be found. However, this is 
at the risk of losing information and therefore quality of the 
final solution. 

Illustrative example 

In our example, there is one initial existing product C1 
and other three potential drugs (C2, C3, C4). In the first 
stage, only product C1 exists for the first 10 time periods,  
Initially there is one manufacturing suite per production 
line. In the second stage, which involves product C1, as 
well as potential product C2 (because the trials for C2 will 
be completed at the end of stage 1), 4 scenarios are 
generated. The second stage lasts until time period 20. 
Then for the third stage, the third potential product is 
added to the product portfolio at time period 21, giving a 
total of 16 scenarios until period 31, when the last potential 
product C4 is added. The fourth stage then has 64 
scenarios. So, for each scenario, additional capacity 
investment may be made. Additionally, the manufacture of 
any product with unfavourable outcomes may be 
suspended, and the available resources reallocated for 
other products.  

Table 1 shows the comparative results of the parameter 
analysis tests for the detailed model (no aggregation), and 
two aggregation levels; Level 1 (involving only stage 4) 
and Level 2 (aggregating both stages 3 and 4).  

The results obtained from both aggregation levels 
were very similar to those obtained by the detailed model 
alone. In most cases, the CPU computational times were 
considerably reduced, by up to 60% on average for Level 1 
and about 50% for Level 2. The decrease in the final 
iteration count was also high, of 40% for the Level 1 and 
about 38% for the Level 2 tests. In that sense, Level 1 
rendered a better performance than Level 2 aggregation 
scheme.  

The GAMS (Brooke et al., 1998) system was used to 
implement the model using Cplex 6.0 MILP optimiser with 
an optimality gap of 3% to compute the solution using a 
Sun Ultra60 workstation.  

For every case, the solutions included a complete 
profile of the  sales, production amounts, manufacturing 
times, inventories, wastes and, if needed, investment 
capacity for each product. 



 

   

Table 1. Scenario Aggregation results 

  No aggregation Aggregation Level 1 Aggregation Level 2 
 Parameter eNPV CPU Iter. eNPV CPU Iter. eNPV CPU Iter. 

1 Reference 892.93 29 15713 892.93 17 11004 892.93 23 10394
2 R1 = 4.5 865.61 933 23987 865.76 412 14791 862.46 676 16833
3 R={4.5,1.5} 845.24 1861 30275 845.52 743 18934 845.99 1144 20818
4 λ={500,600} 847.18 2623 34484 847.61 988 21884 842.76 983 22429
5 σ3=120 840.24 873 19656 836.26 148 8995 833.11 121 8705 
6 ξL1,2=2 722.81 2176 31054 722.46 832 19514 720.44 1098 21073
7 ν1=18 3403.35 1735 22613 3387.75 635 15593 3399.07 605 12392
8 E L1=0.6 818.91 2220 37979 818.52 883 18932 819.15 7032 21491

 
Conclusions 

The proposed scenario aggregation algorithm has 
proved to render satisfactory results, especially for the 
Level 1 case. A substantial improvement in the 
computational times was achieved by using the 
aggregation scheme although for the Level 2 
aggregation, the results obtained were not as good as for 
the Level 1. The objective function values of the 
aggregated procedure for most tests were close enough 
to the detailed model solution, however an important 
issue to mention is that after analysing the particular 
solution for each test we found that the capacity planning 
decisions taken were slightly different from one case to 
the other. This indicates that the model is quite robust, 
and that a wrong decision taken in the last part of the 
project does not significantly affect the final expected 
profits.  

Nomenclature 

k = scenario 
s = stages 
KSs = set of included scenarios for stage s 
IPs = set of included products for stage s 
TSs = time periods within stage s 
πks = clinical trial outcome probability for scenario k at stage s 
π ks = cumulative probability for each group Gk,s in the 

aggregation approach 
βk = weight of each outcome for the forecasted demands, 1 for 

a High Success, 0.95 for a Target Success, 0.65 for Low 
Success, 0 for Failure. 

NO = number of possible outcomes considered 
B pks = Adjusted (average) factor βko for scenario aggregated 

groups 
Dpt  = demand as forcasted in period t for product p 
D ptks = adjusted demand for scenario aggregated group 
Gks = set of original scenarios included in the aggregated 

scenario k for s  
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