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Abstract

A large number of problems in production planning and scheduling, location, transportation,
finance, and engineering design require that decisions be made in the presence of uncertainty. Un-
certainty, for instance, governs the prices of fuels, the availability of electricity, and the demand for
chemicals.

A key difficulty in optimization under uncertainty is in dealing with an uncertainty space that is
huge and frequently leads to very large-scale optimization models. Decision-making under uncertainty
is often further complicated by the presence of integer decision variables to model logical and other
discrete decisions in a multi-period or multi-stage setting.

This paper reviews theory and methodology that have been developed to cope with the complex-
ity of optimization problems under uncertainty. We discuss and contrast the classical recourse-based
stochastic programming, robust stochastic programming, probabilistic (chance-constraint) program-
ming, and fuzzy programming. The advantages and shortcomings of these models are reviewed and
illustrated through examples. Applications and the state-of-the-art in computations are also reviewed.

Finally, we discuss several main areas for future development in this field. These include de-
velopment of polynomial-time approximation schemes for multi-stage stochastic programs and the
application of global optimization algorithms to two-stage and chance-constraint formulations.
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Introduction

Over the second half of the twentieth century, opti-
mization found widespread applications in the study
of physical and chemical systems, production planning
and scheduling systems, location and transportation
problems, resource allocation in financial systems, and
engineering design. From the very beginning of the
application of optimization in these problems, it was
recognized that analysts of natural and technological
systems are almost always confronted with uncertainty.

Beginning with the seminal works of Beale (1955),
Dantzig (1955), Tintner (1955), Charnes & Cooper
(1959), and Bellman & Zadeh (1970), mathematical
programming under uncertainty has experienced rapid
development in both theory and algorithms. Today,
Dantzig still considers planning under uncertainty as
one of the most important open problems in optimiza-
tion (Horner 1999).

It is beyond the scope of this paper to provide a

detailed coverage of optimization under uncertainty.
The main purpose of this paper is to provide a short
overview of the field and give pointers to the literature
that can be used as starting points for further study.
For additional details and information, we refer the
reader to the recent textbooks of Zimmermann (1991),
Kall & Wallace (1994), Prékopa (1995), and Birge &
Louveaux (1997), and the very informative Stochastic
Programming Web Site (2002).

Approaches to optimization under uncertainty have
followed a variety of modeling philosophies, including
expectation minimization, minimization of deviations
from goals, minimization of maximum costs, and op-
timization over soft constraints. We begin with an
overview of the two main approaches to optimization
under uncertainty: stochastic programming (recourse
models, robust stochastic programming, and proba-
bilistic models) and fuzzy programming (flexible and
possibilistic programming). Then, we review applica-
tions and the state-of-the-art in computations, as well



as important algorithmic developments by the process
systems engineering community. Finally, we draw con-
nections between models for optimization under uncer-
tainty and global optimization. Throughout the pre-
sentation, we point out the fundamental differences of
different modeling philosophies in optimization under
uncertainty.

Stochastic Programming

Programming with Recourse

Under the standard two-stage stochastic pro-
gramming paradigm, the decision variables of an
optimization problem under uncertainty are parti-
tioned into two sets. The first-stage variables are those
that have to be decided before the actual realization
of the uncertain parameters. Subsequently, once the
random events have presented themselves, further
design or operational policy improvements can be
made by selecting, at a certain cost, the values of the
second-stage, or recourse, variables. Traditionally, the
second-stage variables are interpreted as corrective
measures or recourse against any infeasibilities arising
due to a particular realization of uncertainty. However,
the second-stage problem may also be an operational-
level decision problem following a first-stage plan and
the uncertainty realization. Due to uncertainty, the
second-stage cost is a random variable. The objective
is to choose the first-stage variables in a way that the
sum of the first-stage costs and the expected value
of the random second-stage costs is minimized. The
concept of recourse has been applied to linear, integer,
and nonlinear programming.

Stochastic Linear Programming

A standard formulation of the two-stage stochas-
tic linear program is (Birge & Louveaux 1997, Kall &
Wallace 1994):

min ctx + Eω∈Ω[Q(x, ω)] (1)
s.t. x ∈ X,

with

Q(x, ω) = min f(ω)ty (2)
s.t. D(ω)y ≥ h(ω) + T (ω)x

y ∈ Y,

where X ⊆ �n1 and Y ⊆ �n2 are polyhedral sets. Here,
c ∈ �n1 , ω is a random variable from a probability space
(Ω,F ,P) with Ω ⊆ �k, f : Ω → �n2 , h : Ω → �m2 ,
D : Ω → �m2×n2 , T : Ω → �m2×n1 . Problem (1) with
variables x constitute the first stage which needs to be
decided prior to the realization of the uncertain param-
eters ω ∈ Ω. Problem (2) with variables y constitute
the second stage.

Under the assumption of discrete distributions of
the uncertain parameters, the problem can be equiva-
lently formulated as a large-scale linear program which
can be solved using standard LP technology. Convex-
ity properties of the recourse function Q(·) (Wets 1966,
Wets 1974) have been effectively used in decomposition-
based solution strategies (Van Slyke & Wets 1969, Birge
& Louveaux 1988).

For continuous parameter distributions, these prop-
erties have been used to develop sampling-based de-
composition and approximation schemes (Van Slyke
& Wets 1969, Ruszczyński 1986, Birge & Louveaux
1988, Higle & Sen 1991, Infanger 1994, Shapiro &
Homem-de-Mello 1998) as well as gradient-based algo-
rithms (Ermoliev 1983, Shapiro & Wardi 1996).

The two-stage formulation is readily extended to
a multi-stage setting by modeling the uncertainty as
a filtration process. Under discrete distributions,
this reduces to a scenario tree of parameter realiza-
tions. Decomposition schemes that partition the time
stage (Birge 1985) as well as those that partition the
scenario space (Rockafellar & Wets 1991) have been de-
veloped for multi-stage linear programs.

For an extensive discussion of stochastic linear pro-
gramming, the reader is referred to standard textbooks
on stochastic programming (Infanger 1994, Kall &
Wallace 1994, Prékopa 1995, Birge & Louveaux 1997).

Stochastic Integer Programming

Stochastic integer programming addresses instances
of (1)-(2) where the set Y contains integer restric-
tions. Much of the early work in this area has been
on the design and analysis of heuristics for two-stage
stochastic integer programs (Dempster, Fisher, Jansen,
Lageweg, Lenstra & Rinnooy Kan 1981, Spaccamela,
Rinnooy Kan & Stougie 1984, Stougie 1985). Exact al-
gorithmic approaches are more recent and include ex-
tensions of the decomposition strategies for stochastic
linear programs (Laporte & Louveaux 1993, Carøe &
Tind 1998), Lagrangian relaxation schemes (Takriti,
Birge & Long 1996, Carøe & Schultz 1999), algebraic
enumeration (Schultz, Stougie & van der Vlerk 1998),
convexification (Higle & Sen 2000, Sherali & Fraticelli
2000), and decomposition/branch-and-bound (Ahmed,
Tawarmalani & Sahinidis 2000).

For problems where the second-stage recourse ma-
trix D possesses a special structure known as simple re-
course, Klein Haneveld, Stougie & van der Vlerk (1995)
and Klein Haneveld, Stougie & van der Vlerk (1996)
proposed solution schemes based upon the construc-
tion of the convex hull of the second-stage value func-
tion. For more general recourse structure, Laporte &
Louveaux (1993) proposed a decomposition-based ap-
proach for stochastic integer programs when the first-
stage variables are pure binary. This restriction allows
for the construction of optimality cuts that approx-



imate the non-convex second-stage value function at
only the binary first-stage solutions (but not necessar-
ily at other points). The authors proposed a branch
and bound algorithm to search the space of the first-
stage variables for the globally optimal solution, while
using the optimality cuts to approximate the second-
stage value function. Finite termination of the algo-
rithm is obvious since the number of first-stage so-
lutions is finite. The method has been successfully
used in solving two-stage stochastic location-routing
problems (Laporte, Louveaux & Mercure 1989, La-
porte, Louveaux & Mercure 1992, Laporte, Louveaux &
Mercure 1994, Laporte, Louveaux & van Hamme 1994).
Unfortunately, the algorithm is not applicable if any of
the first-stage variables are continuous. Carøe & Tind
(1998) generalized this algorithm to handle cases with
mixed-integer first- and second-stage variables. The
method requires the use of non-linear integer program-
ming dual functions to approximate the second-stage
value function in the space of the first-stage variables.
The resulting master problem then consists of non-
linear (possibly discontinuous) cuts and no practical
method for its solution is currently known.

Carøe & Tind (1997), Carøe (1998), and Carøe &
Schultz (1999) used the scenario decomposition ap-
proach of Rockafellar & Wets (1991) to develop a
branch and bound algorithm for stochastic integer pro-
grams. This method solves the Lagrangian dual, ob-
tained by dualizing the non-anticipativity constraints,
as the lower bounding problem within a standard
branch and bound framework. The subproblems of the
Lagrangian dual correspond to the second-stage sce-
narios and are difficult to solve as they include inte-
ger constraints. Furthermore, although the Lagrangian
dual provides very tight bounds, its solution requires
the use of subgradient methods and is computationally
expensive. A potential limitation of this approach is
that finite termination is guaranteed only if the first-
stage variables are purely discrete, or if an ε−optimal
termination criterion with ε > 0 is used.

Recently, Schultz et al. (1998) proposed a finite
scheme for two-stage stochastic programs with discrete
distributions and pure-integer second-stage variables.
For this problem, Schultz et al. (1998) observe that
only integer values of the right-hand-side parameters
of the second-stage problem are relevant. This fact is
used to identify a finite set in the space of the first-
stage variables containing the optimal solution. Schultz
et al. (1998) propose complete enumeration of this set
to search for the optimal solution. This set may be
very large and evaluation of each of its elements re-
quires the solution of second-stage integer subproblems.
Thus, this approach is, in general, computationally pro-
hibitive.

The above papers assume discrete probability dis-
tributions for the uncertain parameters. Except for
simple cases that afford closed form solutions, sam-

pling is required when dealing with continuous distri-
butions of the problem parameters. Thus, convergence
proofs for the resulting algorithms have to be proba-
bilistic. For continuous distributions, Norkin, Ermoliev
& Ruszczyński (1998) developed a branch and bound
algorithm that makes use of stochastic upper and lower
bounds and proved almost sure convergence.

More recently, stochastic integer programming is
receiving increased attention from the point of view
of convexification. Higle & Sen (2000) and Sherali
& Fraticelli (2000) have proposed algorithms that
invoke ideas from lift-and-project (Balas, Ceria &
Cornuejols 1993) and the reformulation-linearization
technique (Adams & Sherali 1990) in the context
of Benders-like decomposition approaches. These
approaches are in their formative stages and no im-
plementations have yet been reported. By exploiting
some of the structural properties of stochastic integer
programs, Ahmed et al. (2000) develop a finite branch
and bound scheme for a class of stochastic integer
programs and present some encouraging computational
results on small problems.

Stochastic Nonlinear Programming

Nonlinear versions of the linear and integer pro-
grams considered in this paper have many applications,
especially in engineering design, as well as planning and
scheduling. For example, two-stage nonlinear stochas-
tic programming addresses the problem:

min f(x) + Eω∈Ω[Q(x, ω)] (3)
s.t. g(x) ≤ 0,

with

Q(x, ω) = min F (ω, x, y) (4)
s.t. G(ω, x, y) ≤ 0

y ∈ Y,

where X ⊆ �n1 , Y ⊆ �n2 , ω is a random variable from
a probability space (Ω,F ,P) with Ω ⊆ �k, and the real
functions f , g, F , and G have conformable dimensions.

Most of the algorithms developed for stochastic
linear programming carry over to the nonlinear case.
However, nonlinearities may give rise to nonconvexities
and local optima. We refer the reader to the thesis
of Bastin (2001) for a more detailed discussion of
nonlinear stochastic programming.

Robust Stochastic Programming

The recourse-based model (1) makes a decision
based on present first-stage and expected second-stage
costs, i.e., based on the assumption that the decision-
maker is risk-neutral. To capture the notion of risk in
stochastic programming, Mulvey, Vanderbei & Zenios



(1995) proposed the following modification of the ob-
jective function of (1):

min ctx + Eω∈Ω[Q(x, ω)] + λf(ω, y)

where f is a variability measure, such as variance, of
the second-stage costs and λ is a nonnegative scalar
that represents the risk tolerance of the modeler. Large
values of λ result into solutions that reduce variance
while small values of λ reduce expected costs.

Applications of this, so-called robust stochastic pro-
gramming, framework and its variants have been re-
ported in power systems capacity expansion (Malcolm
& Zenios 1994), power dispatch (Beraldi, Musmanno
& Triki 1998), chemical process planning (Ahmed &
Sahinidis 1998), telecommunications network design
(Bai, Carpenter & Mulvey 1997, Laguna 1998), and
financial planning (Mulvey et al. 1995, Bai et al. 1997,
Kouwenberg & Zenios 2001).

Various examples demonstrate that a straight
forward deterministic reformulation of robust models
may result in second-stage solutions that are sub-
optimal for the recourse problem (King, Takriti &
Ahmed 1997, Sen & Higle 1999). This is a highly
undesirable property as it may lead to an underes-
timation of the recourse costs. Takriti & Ahmed
(2002) proposed sufficient conditions on the variability
measure to remedy this problem.

Probabilistic Programming

The recourse-based approach to stochastic program-
ming requires the decision maker to assign a cost to re-
course activities that are taken to ensure feasibility of
the second-stage problem. In essence, the philosophy of
this approach is that infeasibilities in the second stage
are allowed at a certain penalty. The approach thus
focuses on the minimization of expected recourse costs.
In the probabilistic or chance-constraint approach, the
focus is on the reliability of the system, i.e., the sys-
tem’s ability to meet feasibility in an uncertain envi-
ronment. This reliability is expressed as a minimum
requirement on the probability of satisfying constraints.

Consider the classical linear programming model:

max ctx (5)
s.t. Ax ≥ b

x ≥ 0,

where c and x are n-vectors, b is an m-vector, and A is
an m× n matrix. Assume that there is uncertainty re-
garding the constraint matrix A and the right-hand-side
vector b, and that the system is required to satisfy the
corresponding constraint with a probability p ∈ (0, 1).
Then, the probabilistic linear program corresponding
to the classical (deterministic) linear program can be
stated as follows:

max ctx (6)

s.t. P (Ax ≥ b) ≥ p

x ≥ 0.

Consider the case when m = 1, i.e., the case of a
single constraint P (atx ≥ b) ≥ p. Further, assume that
the vector a is deterministic while the right-hand-side
b is a random variable with cumulative distribution F .
Let β be such that F (β) = p. Then, the constraint
P (atx ≥ b) ≥ p can be written as F (atx) ≥ p or atx ≥
β. In this simple case, the probabilistic program is
equivalent to a standard linear program.

For the case when the matrix A is deterministic
and the vector b has a log-concave multivariate prob-
ability density function, Prékopa (1971) has shown
that the feasible set of (6) is convex. Other stan-
dard cases in which probabilistic constraints can be
converted to standard constraints are summarized in
Prékopa (1995). However, in general, the feasible set of
(6) may be nonconvex. This issue is discussed later in
this paper.

Fuzzy Mathematical Program-
ming

Like stochastic programming, fuzzy programming also
addresses optimization problems under uncertainty. A
principal difference between the stochastic and fuzzy
optimization approaches is in the way uncertainty is
modeled. In the stochastic programming case, uncer-
tainty is modeled through discrete or continuous prob-
ability functions. On the other hand, fuzzy program-
ming considers random parameters as fuzzy numbers
and constraints are treated as fuzzy sets. Some con-
straint violation is allowed and the degree of satisfac-
tion of a constraint is defined as the membership func-
tion of the constraint. For example, consider a linear
constraint atx ≤ β in terms of the decision vector x and
assume that the random right-hand-side β can take val-
ues in the range from b to b + ∆b, with ∆b ≥ 0. Then,
the linear membership function, u(x), of this constraint
is defined as:

u(x) =




1, if atx ≤ b,
1 − atx−b

∆b , if b < atx ≤ b + ∆b,
0, if b + ∆b < atx.

Although other types of membership functions are also
possible, the above linear membership function is typ-
ically used. Objective functions in fuzzy mathematical
programming are treated as constraints with the lower
and upper bounds of these constraints defining the de-
cision maker’s expectations.

Many of the developments in the area of fuzzy
mathematical programming are based on the seminal
paper by Bellman & Zadeh (1970). The field has been
recently popularized by the work of Zimmermann
(1991). Two types of fuzzy programming will be



considered here: flexible programming and possibilistic
programming. Flexible programming deals with
right-hand-side coefficient uncertainties while possi-
bilistic programming recognizes uncertainties in the
objective function coefficients as well as in constraint
coefficients. In both types of fuzzy programming, the
membership function is used to represent the degree
of satisfaction of constraints, the decision maker’s
expectations about the objective function level, and
the range of uncertainty of coefficients.

Flexible Programming

Consider the classical linear programming model:

max ctx (7)
s.t. Ax ≤ b

x ≥ 0,

where c and x are n-vectors, b is an m-vector, and A is
an m × n matrix. Let us suppose that there is uncer-
tainty regarding the exact values of the coefficients and
some violation of the constraints is acceptable within a
certain range. This means that some parts of (7) can
be fuzzy. When the elements of A, b, or c are treated as
fuzzy numbers rather than crisp numbers, constraints
can be represented by fuzzy sets rather than by crisp
inequalities, and objective functions can be represented
by a fuzzy goal rather than a crisp objective function.
We use α̃ to indicate that the parameter α is fuzzy.
Similarly, atx≤̃b means that at should be essentially
smaller than or equal to b, i.e., that this constraint is
a soft constraint for which some violation is allowed.
The tolerance or spread of the fuzzy parameter α will
be denoted by ∆α.

A flexible programming problem can then be written
as (Tanaka, Okuda & Asai 1974, Zimmermann 1991):

m̃ax ctx (8)
s.t. Ax≤̃b

x ≥ 0.

Let us denote (cj , a1j , . . . , amj)t and (v, b1, . . . , bm)t

by (â0j , â1j , . . . , âmj)t and (b̂0, b̂1, . . . , b̂m)t, respec-
tively. Then, problem (8) can be rewritten as follows:

Find x s.t. Âx≤̃b̂, (9)

where Â is an (m+1)×n matrix and b̂ is an (m+1) vec-
tor. It is assumed that the fuzzy constraints and fuzzy
goal are subjectively defined by the decision maker. Let
ui(x) denote the membership for the ith constraint of
(8), i = 1, . . . , n. Also, let u0(x) denote the mem-
bership function of the objective of (8). In addressing
problem (9), Bellman & Zadeh (1970) define an optimal
fuzzy decision to be:

x∗ = arg max
x≥0

min
i=0,...,n

ui(x).

According to this definition, the optimal solution of
problem (9) can be obtained by solving the nonlinear
programming problem

max
x≥0

min
i=0,...,n

1 − Âix − bi

∆bi
.

By introducing one new variable λ, Zimmermann
(1978) showed that, if all membership functions are lin-
ear, then (8) can be reduced to a classical linear pro-
gram:

max λ (10)
s.t. Āx + λ ≤ b̄

x ≥ 0
0 ≤ λ ≤ 1,

where the elements of Ā and b̄ are āij = âij

∆bi
and b̄i =

1 + b̂i

∆bi
, respectively.

Problem (10) includes one more variable and one
more constraint than the original problem (8). Al-
though a linear membership function is only a very
rough approximation of the knowledge of the decision-
maker about the membership function, Delgado, Her-
rera, Verdegay & Vila (1993) showed that the optimal
solution obtained by using a linear membership func-
tion is often of the same quality as the solution ob-
tained using a complicated nonlinear membership func-
tion. Therefore, the use of linear membership provides
an efficient way to solve fuzzy programs and obtain so-
lutions of good quality.

Note that the spread of the objective function,
∆b0, must be provided by the decision maker. It
expresses the decision maker’s aspiration in regard to
the objective function value. ∆b0 can be estimated as
the difference of the potential upper and lower bounds
for the objective function (Zimmermann 1991).

Possibilistic Programming

When (7) involves uncertainty in constraint coeffi-
cients, the fuzzy program is called possibilistic (Tanaka
& Asai 1984). A possibilistic linear programming prob-
lem can be written as follows:

m̃ax c̃tx (11)
s.t. Ãx ≤ b̃

x ≥ 0.

Let aij and ∆aij , respectively, represent the cen-
ter and spread of the fuzzy number ãij . Similarly, let
cj and ∆cj denote the center and spread of the fuzzy
number c̃j . Now, consider the following membership
functions:

ui(x) =




1, if Aix ≤ bi,
1 − Aix−bi

∆Aix+∆bi
, if bi < Aix <

bi + ∆Aix + ∆bi,
0, otherwise,



and

u0(x) =




1, if b0 ≤ ctx,
1 − b0−ctx

∆b0+∆ctx , if b0 − ∆b0 − ∆ctx
< cx < b0,

0, otherwise,

where [b0−∆b0, b0] denotes the aspiration range for the
objective. Then, the Bellman-Zadeh decision making
criterion leads to the following equivalent of the possi-
bilistic program after the introduction of a new variable
λ:

max λ (12)
s.t. ctx + ∆ctx(1 − λ) ≥ b0 − ∆b0(1 − λ)

Ax − ∆Ax(1 − λ) ≤ b + ∆b(1 − λ)
x ≥ 0
0 ≤ λ ≤ 1.

The possibilistic programming problem (11) has been
reduced into the nonlinear programming problem (12).
Here, b0 and ∆b0 can be calculated by interval linear
programming (Tong 1994). In general, (12) has a non-
convex feasible space.

Applications and Computations

Applications

The original applications of stochastic programming
included agricultural economics in Iowa under land
and labor constraints (Tintner 1955), the allocation
of aircraft to routes with penalties for lost passengers
(Ferguson & Dantzig 1956), and the production of heat-
ing oil with constraints on meeting sales and not ex-
ceeding capacity (Charnes, Cooper & Symonds 1958).
More recent applications have included:

• production planning (Dempster et al. 1981,
Lenstra, Rinnooy Kan & Stougie 1983, Bitran,
Haas & Matsuo 1986, Escudero, Kamesam, King
& Wets 1993),

• scheduling (Dempster 1982, Dempster, Fisher,
Jansen, Lageweg, Lenstra & Rinnooy Kan 1983,
Tayur, Thomas & Natraj 1995, Birge & Dempster
1996),

• routing (Spaccamela et al. 1984, Laporte et al.
1989, Laporte et al. 1992),

• location (Laporte, Louveaux & van Hamme 1994),

• capacity expansion (Sherali, Soyster, Murphy &
Sen 1984, Davis, Dempster, Sethi & Vermes 1987,
Bienstock & Shapiro 1988, Eppen, Martin &
Schrage 1989, Berman, Ganz & Wagner 1994, Mal-
colm & Zenios 1994),

• energy investment and electricity production
(Louveaux 1980, Pereira & Pinto 1991, Morton
1996, Takriti et al. 1996, Carøe, Ruszczyński &
Schultz 1997),

• environmental management and control (King,
Rockafellar, Somlyody & Wets 1988, Somlyody
& Wets 1988, Pinter 1991, Watanabe & Ellis
1993, Wagner, Shamir & Marks 1994, Birge &
Rosa 1996, Norkin et al. 1998),

• water management (Dupacova, Gaivoronski, Kos
& Szantai 1991),

• agriculture (Shukla & Gupta 1989, Helgason &
Wallace 1991),

• telecommunications (Laguna 1998, Tomasgard,
Dye, Wallace, Audestad, Stougie & van der Vlerk
1998),

• design and optimization of chemical processing
systems (Liu & Sahinidis 1996, Clay & Grossmann
1997, Acevedo & Pistikopoulos 1998, Gupta &
Maranas 2000),

• finance (Kallberg, White & Ziemba 1982, Mulvey
& Vladimirou 1992, Dert 1995, Carino & Ziemba
1998, Kouwenberg & Zenios 2001).

Finally, applications of fuzzy programming
have included production planning (Inuiguchi,
Sakawa & Kum 1994), transportation problems
(Chanas, Kolodziejczyk & Machaj 1984, Bit,
Bisswal & Alam 1993b, Bit, Bisswal &
Alam 1993a, Chalam 1994), water supply plan-
ning (Slowinski 1986), forest management (Pickenss &
Hof 1991), capacity expansion (Liu & Sahinidis 1997b),
and bank management (Lai & Hwang 1993b, Lai &
Hwang 1993a).

State-of-the-Art in Computations

Stochastic programming problems are much more
difficult than their deterministic counterparts. Yet, sig-
nificant progress has been made towards their exact and
approximate solution.

Exact solution of deterministic equivalents of
stochastic linear programs relies on decomposition. In
a recent review paper, Birge (1997) reports the exact
solution, on parallel computers, of stochastic linear pro-
grams with up to one million variables in their deter-
ministic equivalents. Much larger problems are typi-
cally solvable by sampling-based rather than decompo-
sition methods. Impressive computational results on a
computational grid are reported by Linderoth, Shapiro
& Wright (2002) on stochastic linear programs with up
to 1081 scenarios that were solved using sample-average
approximations.



Much smaller stochastic programs have been re-
ported solved for the integer case. Exact solutions have
been recently obtained for relatively small problems as
reported by Ahmed et al. (2000). We refer the reader
to Verweij, Ahmed, Kleywegt, Nemhauser & Shapiro
(2002) for a recent application of sampling-based meth-
ods to a stochastic routing problem with 21694 scenarios
within an estimated 1% of optimality.

Finally, we refer the reader to the Stochastic Pro-
gramming Web Site (2002) for links to software as well
as test problem collections for stochastic programming.

Developments by the Process Sys-
tems Engineering Community

The process systems engineering community has long
been involved in the development of tools for the
solution of design and operational problems under
uncertainty. These efforts have been motivated by ap-
plications and, in many cases, yielded general-purpose
algorithms. In this section, we review four of these
developments.

Aggregation-Disaggregation Algorithm for Two-Stage
Stochastic Linear Programming

Clay & Grossmann (1997) address the two-stage
stochastic linear programming program with discrete
probability distributions for the uncertain parameters.
In recognition of the fact that the complexity of the
problem stems from the large number of scenarios
of uncertainty, these authors propose an aggregation
of the probability space followed by successive disag-
gregation. Lower and upper bounds on the optimal
objective function of the original problem were then
developed over partition elements of the probability
space. A sensitivity analysis was also developed for
guiding the disaggregation process. The algorithm was
applied to stochastic planing models from the process
industries and was demonstrated to require only few
partitions for the bounds to converge. Problems with
millions of rows and columns in the deterministic
equivalent were successfully solved with this approach.

Multiparametric Programming Approach for Mixed-
Integer Quadratic Programming

When the number of uncertain variables is relatively
small, it is possible to obtain closed-form solutions of
optimization problems in terms of the values of the
uncertain parameters. Dua, Bozinis & Pistikopou-
los (2002) obtain such solutions for mixed-integer
quadratic programs with a few uncertain parameters.
The basic idea is to utilize parametric nonlinear
programming tools to systematically characterize the
space of parameters by a set of regions of optimality.

The algorithm developed by these authors was applied
to model predictive and hybrid control problems.

Exact Branch-And-Bound Algorithm for Two-Stage
Stochastic Integer Programming

Ahmed et al. (2000) address a general class of
two-stage stochastic integer programs with integer
recourse and discrete distributions. By restating the
problem in terms of the so-called tender variables, the
discontinuities associated with the value function of
the second-stage integer problem become orthogonal
to the variable axes. The authors then develop a
branch-and-bound algorithm to solve this problem.
This scheme departs from previous literature in that it
avoids explicit enumeration of the search space while
guaranteeing finiteness.

An Approximation Scheme for Multistage Stochastic
Integer Programs for Capacity Expansion

In a recent line of research, Liu & Sahinidis (1997a),
Ahmed & Sahinidis (2000), Ahmed & Sahinidis (2002),
and Furman & Sahinidis (2002) proposed linear pro-
gramming based heuristics for operational and design
problems in process systems engineering. The distin-
guishing feature of this solution paradigm is the analyt-
ical derivation of bounds for the quality of the solutions
obtained by heuristics that run in polynomial time. In
particular, Ahmed & Sahinidis (2002) address the ap-
proximate solution of large-scale multistage stochastic
integer programs arising from capacity expansion in the
process industries. The presence of integer variables
in every stage makes this problem very challenging.
Through a suitable rounding of the linear programming
relaxation and bundling of the capacity expansion de-
cisions, these authors obtain a feasible integer solution
to this problem. Through a probabilistic analysis, the
authors prove that the optimality gap of the solution
thus obtained almost surely vanishes asymptotically as
the number of stages increases. Computational expe-
rience demonstrates that the proposed approach yields
near-optimal solutions even for small problem sizes.

Connections Between Global Op-
timization and Optimization un-
der Uncertainty

The purpose of this section is to demonstrate that many
optimization programs under uncertainty are very dif-
ficult to solve as they correspond to multi-extremal
nonlinear optimization problems even when this is not
directly apparent, as is the case in seemingly linear for-
mulations. For this purpose, we present two examples,
the first from stochastic integer programming and the



second from probabilistic programming. Other classes
of stochastic programs that give rise to multiextremal
global optimization problems are possibilistic programs
(Liu & Sahinidis 1997b), stochastic programs with
decision-dependent uncertainties (Ahmed 2002), and
robust stochastic programs (King et al. 1997).

Two-Stage Stochastic Integer Programming

Consider the following example of a two-stage
stochastic integer program from Schultz et al. (1998):

EX1 : min −1.5x1 − 4x2 +
4∑

s=1

psQs(x1, x2)

s.t. 0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 5

where Qs(x1, x2) is defined as the optimal objective
function value of:

min −16y1 − 19y2 − 23y3 − 28y4

s.t. 2y1 + 3y2 + 4y3 + 5y4 ≤ ωs
1 −

1
3
x1 − 2

3
x2

6y1 + y2 + 3y3 + 2y4 ≤ ωs
2 −

2
3
x1 − 1

3
x2

yi ∈ {0, 1} i = 1, . . . , 4

and (ω1, ω2) ∈ {5, 15} × {5, 15} with uniform probabil-
ity (i.e., ps = 1

4 for s = 1, . . . , 4).
There are only two degrees of freedom in this ex-

ample: the first-stage variables x1 and x2. Once their
values are specified, the y-variables are determined by
solving the second-stage integer optimization problem.
This allows us to plot the objective function value
of EX1 in the space of x1-x2 (Figure 1 from Ahmed
(2002)). The objective is piecewise polyhedral with
several local minima. The unique global minimum is
at (0,3).
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Figure 1: Value function of EX1

Probabilistic Programming

Consider the following probabilistic program in
terms of two variables and two probabilistic constraints:

EX2 : max ctx

s.t. P
(

x1+x2≥b1
x1+3x2≥b2

)
≥ 0.5

x1 ≥ 0, x2 ≥ 0,

where b1 and b2 are dependent random variables with
P (b1 = 2, b2 = 4) = 0.5 and P (b1 = 3, b2 = 0) =
0.5. Clearly, any (x1, x2) satisfying x1 + x2 ≥ 2 and
x1 + 3x2 ≥ 4 is feasible to EX2. Let this polyhedral
set be denoted by P1. Similarly, let P2 denote the
polyhedral set of points satisfying x1 + x2 ≥ 3 and
x1 + 3x2 ≥ 0. The union of P1 and P2 provides the
complete feasible set of EX2. This union is not convex
as shown in Figure 2.
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Figure 2: Feasible set of EX2

Conclusions

Several modeling frameworks have been proposed in the
literature for optimization under uncertainty. Along
with them, a variety of algorithms have been developed
and used successfully in many applications.

The current state-of-the-art in this field allows ap-
proximate solution of very large-scale problems with
sampling-based methods. Exact solution of determin-
istic equivalents is much harder and requires the use of
advanced computer architectures.

There are several challenges in the area of optimiza-
tion under uncertainty. Here, we mention a few:

• There is a notable need for systematic compar-
isons between the different modeling philosophies.
A small step in this direction has been taken by
Liu & Sahinidis (1996) who compared stochastic
programming and fuzzy programming as applied
to chemical process planning.

• While significant progress has been made towards
the solution of two-stage stochastic programs, the
multi-stage case represents a significant challenge.
In the case of stochastic integer programming with
integer variables in stages other than the first, this



represents a conceptual in addition to computa-
tional challenge. Deeper understanding of prob-
lem structure and properties is required in order
to devise applicable algorithms.

• Contrary to the linear case, the integer and non-
linear cases have received limited attention. Com-
putational results abound for the linear case but
are somewhat limited for the integer and non-
linear cases. It appears unlikely that general-
purpose algorithms will solve such problems ex-
actly. Instead, we expect to see the development of
problem-specific approximation schemes for inte-
ger and nonlinear problems such as the asymptot-
ically optimal approximation scheme recently pro-
posed by Ahmed & Sahinidis (2002) for capacity
expansion of chemical processes.

• As the previous section illustrated, there are sev-
eral opportunities for the development and appli-
cation of global optimization algorithms to solve
optimization problems under uncertainty.
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