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Abstract
The repeated solution of large scale mathematical optimization problems arises frequently in the operation of process
systems. Generalized Benders Decomposition (GBD) can be used to reduce the computational time, however its imple-
mentation is nontrivial. In this work we aim at developing a machine learning approach to accelerate the solution of large
scale optimization problems by optimally initializing GBD. We train surrogate models to estimate the computational
time for different number of cuts for given values of the parameters of the optimization problem. The surrogate models
are used to find the optimal number of cuts that should be added in the master problem in the first iteration such that the
computational time is minimized. Additionally, we improve the computational performance of the proposed approach
using active learning. We apply this approach to a case study on the integration of production scheduling and dynamic
optimization for continuous systems and analyze the computational performance.
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Introduction
Generalized Benders Decomposition (GBD) has been

widely used to solve large scale optimization problems that
arise in the design and operation of process systems (Conejo
et al. (2006); Grossmann (2005); Rahmaniani et al. (2017);
Chu and You (2013); Nie et al. (2012); Mitrai and Daou-
tidis (2021)). In this approach, the original problem is de-
composed into two problems; a master problem which con-
tains the discrete variables and a subproblem which con-
tains the continuous variables and depends on the values of
the variables of the master problem. The coordination be-
tween the master problem and the subproblem is done via
the addition of Benders optimality/feasibility cuts (Geoffrion
(1972)). Since the algorithm alternates between the solution
of the master problem and the subproblem, the computational
performance depends on the complexity of the master prob-
lem and subproblem, the number of infeasible subproblems
that must be solved and the quality of cuts (in terms of tight-
ness) that are generated during the solution.

We can argue that two approaches can be followed to
handle these issues. The first one is based on the theoreti-
cal aspects of the algorithm and the underlying geometry of
the problem. Common strategies in this approach are prob-
lem reformulation and decomposition (Crainic et al. (2016);
Magnanti and Wong (1981)), initialization using valid in-

equalities (Saharidis et al. (2011)), multicut implementation
(You and Grossmann (2013)), cut generation and manage-
ment (Magnanti and Wong (1981); Su et al. (2015); Saharidis
and Ierapetritou (2010); Pacqueau et al. (2012)), and regu-
larization/stabilization of the master problem (Ruszczyński
and Świetanowski (1997); Linderoth and Wright (2003)). In
the second approach machine learning is used to substitute
the heuristic or computationally expensive steps of the algo-
rithm (Bengio et al. (2021)). Typical example is the addition
of cuts for the solution of two stage stochastic optimization
problems (Jia and Shen (2021); Lee et al. (2020)) and the ap-
proximation of the solution of the subproblem (Larsen et al.
(2022)).

In this work, we will focus on the initialization of GBD
regarding the number of cuts that should be added in the first
iteration of the algorithm. We will consider the case where
an optimization problem must be solved repeatedly given up-
dated values of the parameters and the task is to decide the
optimal number of cuts to add in the first iteration such that
the CPU time is minimized. Since the effect of the number of
cuts on the solution time is not known a-priori, we propose
a supervised learning approach to estimate the effect of cuts
on the CPU time for given values of the parameters. Next,
we show that the efficiency of the proposed approach can be
improved using active learning. We apply the proposed ap-
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proach to a case study on the integration of scheduling and
dynamic optimization. The results show that the proposed
approach can lead to significant reduction in CPU time (up
to 70%).

Generalized Benders Decomposition

We will assume that the following problem (denoted as
P ) must be solved:

P (p) := minimize
z,x,y

f1(z,x; p1)+ f2(x,y; p4)

subject to g1(z,x; p2)≤ 0
g2(x,y; p5)≤ 0
h1(z,x; p3) = 0
h2(x,y; p6) = 0

z ∈ Znz ,x ∈ Rnc
x ×Znd

x ,y ∈ Rny ,

(1)

where p = [p1...p6]
⊤ are the parameters of the problem, and

z ∈ Znz , x ∈ Rnc
x ×Znd

x ,y ∈ Rny are the variables. The solu-
tion of this problem depends on the values of the parameters
p. The complicating variables are the x variables and we can
solve the problem using GBD. The subproblem is

S(x, p4, p5, p6) := minimize
x̄,y

f2(x̄,y; p4)

subject to g2(x̄,y; p5)≤ 0
h2(x̄,y; p6) = 0
x̄ = x : λ

x̄ ∈ Rnc
x+nd

x ,y ∈ Rny .

(2)

The solution of this problem depends on the values of the
complicating variables x. The master problem is:

M (·) := minimize
z,x,η

f1(z,x; p1)+η

subject to g1(z,x; p2)≤ 0
h1(z,x; p3) = 0

η ≥ f2(x̄l , ȳl ; p4)−λ
l(x− x̄l) ∀l ∈ L

z ∈ Znz ,x ∈ Rnc
x ×Znd

x ,

(3)

where M (·)=M (p1, p2, p3,L), l is the iteration number and
the set L denotes the index of the Benders cuts. The steps of
GBD are presented in Algorithm 1.

Problem definition and proposed solution approach

We will assume that problem P must be solved repeat-
edly given new values of the parameters p. The problem that
we will address is the following: Given the new value of the
parameters p, add the optimal number of cuts in the master
problem in the first iteration of the algorithm such that the
CPU time is minimized.

The number of cuts added in the fist iteration can be con-
sidered as a hyper-parameter of GBD. Therefore this is a
hyper-parameter tuning problem, which is known in the lit-
erature as the algorithm configuration problem (Hutter et al.
(2011)). In general the solution of the above problem is chal-
lenging. The effect of a cut on the solution time is not known
a priory, the complicating variables can be both discrete and
continuous, and all the parameters of the problem might
change. For simplicity we will assume that the parameters
of the subproblem do not change, all the complicating vari-
ables are continuous and nc cuts can be added by discretizing
the domain of the complicating variables (x ∈ [xlb,xub]) into
nc uniform points.

Given these assumptions we can compute the cuts once
and add them in the master problem every time the problem
must be solved with updated values of the parameters. How-
ever, the addition of a large number of cuts will increase the
complexity of the master problem, which might increase the
computational time. Therefore for given values of the param-
eters p we must determine the optimal number of cuts to be
added by solving the following problem:

n∗cuts ∈ argmin
ncuts

f (ncuts,φ(P (p))), (4)

where f captures the effect of the number of cuts (for given
parameters in the problem) on the solution time and φ repre-
sent features of the problem which affect the solution time.
Since function f is not known, we can approximate it with
a surrogate model. The steps used to approximate f are pre-
sented in Algorithm 2.



This algorithm returns a surrogate f̂ which estimates the
CPU time for given values of the features of the problem and
number of cuts. Given this function, we can find the optimal
number of cuts by solving the following problem:

n∗cuts = arg min
n∈{2,Ncuts}

f̂ (n,φ(P (p))). (5)

The steps that are followed to initialize Generalized Benders
decomposition based on the learnt surrogate model are pre-
sented in Algorithm 3.

Application to closed loop scheduling and control

In this section we will consider the problem of integra-
tion of scheduling and dynamic optimization. We will use
the optimization problem proposed in Mitrai and Daoutidis
(2022a). We will assume that the system is an isothermal
CSTR where 5 products must be manufactured, and the time
horizon is 24 hours discretized into 5 slots. The dynamic be-
havior of the reactor is described by the following differential
equation

dc(t)
dt

=
F(t)

V
(cin − c(t))− kc(t)3, (6)

where c (mol/L) is the concentration in the reactor, F (L) is
the inlet flowrate, Cin (mol/L) is the inlet concentration and
V = 5000 L,k = 2 L2/(hr mol2) is the volume and reaction
constant respectively.

At each time point different disturbances, i.e. change in
inlet concentration or change in demand, can affect the sys-
tem. Given a disturbance the integrated problem must be re-
solved given the updated process information. In this case
two types of transitions can be performed; either between
products or between an intermediate state and a product. The
integrated problem has the following general form:

max Φ1(w)−∑
i jk

Zi jk f i jk
dyn(ωi jk,θi jk)−∑

i
Ẑi f i

dyn(ω̂i, θ̂i)

s.t. gsched(w,θi jk, θ̂i)≤ 0
gdyn(θi jk,ωi jk)≤ 0 ∀i, j,k

ĝdyn(θ̂i, ω̂i jk)≤ 0 ∀i

Zi jk ∈ {0,1}, Ẑi ∈ {0,1},

(7)

where w are scheduling variables, ωi jk are variables associ-
ated with the dynamic behavior of the system for a transition
from product i to product j in slot k, ω̂i are variables associ-
ated with the dynamic behavior of the system for a transition

from the intermediate state to product i, θi jk is the transition
time for a transition from product i to product j in slot k, and
θ̂i is the transition time from the intermediate state to product
i. The variable Zi jk is equal to 1 if a transition occurs between
product i and j in slot k and zero otherwise and the variable
Ẑi is equal to 1 if a transition occurs between a intermediate
state and product i and zero otherwise. The objective func-
tion has three terms; the first represents the profit, the second
the transition cost for a transition between products, and the
last term represents the transition cost for a transition from
a intermediate state to the products. This problem is a large
scale MINLP whose monolithic solution is intractable.

If we fix the scheduling variables and the transition times
θi jk, θ̂i then the dynamic optimization problems for all the
transitions can be solved independently. We define as φi jk
the value function of the dynamic optimization problem for a
transition from product i to product j in slot k. The dynamic
optimization problem for this transition is

min f i jk
dyn(ωi jk, θ̃i jk)

s.t. gdyn(θ̃i jk,ωi jk)≤ 0

θ̃i jk = θi jk : λi jk.

(8)

where λi jk is the Lagrange multiplier for the equality con-
straint. Similarly we define the value function for a transition
from the intermediate state to product i φ̂i and the dynamic
optimization problem for this transition is

min f i jk
dyn(ω̂i, θ̌i)

s.t. gdyn(θ̌i, ω̂i)≤ 0

θ̌i = θ̂i : λ̂i.

(9)

The value functions φi jk, φ̂i can be approximated with Ben-
ders cuts given by the following equations (Geoffrion (1972))

ηi jk ≥φ
l
i jk(θ̄

l
i jk)−λ

l
i jk(θi jk − θ̄

l
i jk)

η̂i ≥φ̂i(θ̄i)− λ̂
l
i(θ̂i − ¯̂

θ
l
i),

(10)

where l ∈ L denotes the number of points used to approxi-
mate the value functions. The original problem can be refor-
mulated as

max Φ1(w)−∑
i jk

Zi jkηi jk −∑
i

Ẑiη̂i

s.t. gsched(w,θi jk, θ̂i)≤ 0

ηi jk ≥ φ
l
i jk(θ̄

l
i jk)−λ

l
i jk(θi jk − θ̄

l
i jk) ∀i, j,k, l

η̂i ≥ φ̂i(θ̄i)− λ̂
l
i(θ̂i − ¯̂

θ
l
i) ∀i, l.

(11)

To solve the problem we use a hybrid multicut General-
ized Benders Decomposition algorithm proposed in Mitrai
and Daoutidis (2022b). In this algorithm the solution of the
master problem provides the production sequence and the
transition times, and Benders cuts are added to approximate
the transition cost. In this case, the dynamic optimization
problems between the products depend only on the transi-
tion time, whereas the transition from the intermediate state
depends on the transition time and the concentration of the
intermediate state. Therefore, the initialization of the algo-
rithm considers only the optimal number of cuts added to



approximate the transitions between the products, i.e. how
many points should be used to approximate φi jk. We use the
same number of cuts for all transitions.

Training the surrogate models

We assume that at a random time point t the demand of all
the products and the inlet concentration of the reactor change
simultaneously. The statistics of the demand are presented
in Table 1. We assume that the inlet concentration follows
a uniform distribution with low value of 0.8 and high value
1.2. The values of the other parameters can be found in Mitrai
and Daoutidis (2022a). Given the updated process informa-
tion, we solve the problem for different number of cuts and
obtain the CPU time. The features of the problem in this case
are the time point t, the concentration in the reactor c, the in-
let flowrate Q, demand of the products {di}

Nprod
i=1 , inventory

of the products {I0
i }

Nprod
i=1 , state of the system, and number of

cuts added. Overall the features si for data point i are:

si = [t,c,Q,{di}
Nprod
i=1 ,{I0

i }
Nprod
i=1 ,state,ncuts]

and the label yi is the CPU time. For the training, we dis-
cretize the domain of the transition times using Ncuts = 50
and we generate 1000 random disturbances. Overall we ob-
tain 49000 data-points {si,yi}49000

i=1 .

Table 1: Distribution of the demand

Product Nominal value Distribution (Uniform)
low high

1 600 -100 100
2 550 -15 15
3 600 -30 30
4 1200 -20 20
5 2000 -400 400

We train three surrogate models; a decision tree, a random
forest and a neural network using scikit-learn (Pedregosa
et al. (2011)). For the decision tree and the random forest
we used the default values of the parameters. The neural net-
work had 3 layers with 150 neurons, the activation function
was tanh, the learning rate was equal to 10−4, and the regu-
larization parameter α was set equal to 0.01.

Initialization of GBD based on the surrogate models

Once the surrogate models were trained, we generated
100 random disturbances that change simultaneously the de-
mands and the inlet concentration. We solve the problem
initializing the hybrid multicut GBD (Mitrai and Daoutidis
(2022b)) using Algorithm 3. The total CPU time for the dif-
ferent disturbances is presented in Fig. 1 and the solution
time statistics in Table 2. From the results we observe that
the average total CPU time without the addition of cuts (No
cuts) is 14.7 seconds. The proposed approach leads to 70%
reduction in CPU time. From the three surrogate models,
the neural network shows the maximum improvement in to-
tal CPU time. Furthermore, for this case study, the time to
determine the optimal number of cuts is in the order of 10−2

seconds for the decision tree and the neural network and in
the order of 10−1 seconds for the random forest (see Fig. 2).

Table 2: Computational time for the proposed approach for
different surrogate models

Solution
statistics

Initalization strategy

No cuts
Neural

networks
Random
forests

Decision
trees

Average CPU time (sec) 14.7 3.63 3.78 3.74
Average reduction (%) - 71.71 70.50 70.53
Average fold reduction - 4.23 4.01 4.10

Max. reduction (%) - 84.85 83.88 86.40
Min. reduction (%) - 25.66 17.30 21.13
Max fold reduction - 6.60 6.20 7.35
Min fold reduction - 1.34 1.20 1.26

Figure 1: Solution time of the proposed approach with dif-
ferent surrogate models.

Learning to initialize via active learning

Motivation

The main limitation of the above approach is the com-
putational time required to generate the training data to ap-
proximate the CPU time for different values of parameters
and cuts. For the previous case study, the computational time
to obtain the data was 100 hours. For problems with larger
number of product the computational time of this step will be
a bottleneck. To resolve this we use active learning (Settles
(2009)).

Figure 2: CPU time to determine the optimal number of cuts
to add for the different surrogate models.



Active learning approach

Active learning (AL) is commonly used in supervised
machine learning tasks where the features of the data are
known but obtaining their label can be costly or time con-
suming. In the case study considered in this section we can
generate a large number of features (pool of features), i.e.
random disturbances and number of cuts, but we do not know
the labels, i.e. CPU time, for these features. The active learn-
ing strategy will determine for which features from the pool
we should evaluate the CPU time. This strategy is known as
pool based active learning. The surrogate model is a Gaus-
sian Process with Matern kernel (Williams and Rasmussen
(2006)) and we will use uncertainty based sampling where
we evaluate the CPU time of the data-point whose uncer-
tainty σ is maximum. The main steps for the active learning
strategy are presented in Algorithm 4.

For the application of active learning, first we generate
random disturbances and obtain the features of the problem
si. These features form the pool Cp = {si}

Npool
i=1 of data points.

Next we generate a small number of data points (Ninitial) and
evaluate the CPU time. This is the initial training set C =

{xi,yi}Ninitial
i=1 . We also generate Ntest data points and evalu-

ate the CPU and these are the testing data Ctest = {xl ,yl}Ntest
l=1 .

Given the initial training set C and the pool Cp sets, in each
iteration the active learning algorithm will provide the data
point that we should evaluate.

The initial size of the training set is Ninitial = 10, the
size of the testing set is Ntest = 50, the size of the pool is
Npool = 49000, and we allow N = 100 evaluations. The com-
putational time for obtaining the 100 labels is 726 seconds.
We compare the proposed active learning approach, denoted
as GP-AL, with random sampling of 110 points from the pool
using different surrogates models such as Gaussian Process
(GP) with Matern kernel, Neural network (NN), Random
Forest (RF) and Decision Tree (DT). The normalized mean
squared error (NMSE) for the different approaches is pre-
sented in Table 3. From these results we observe that the ac-
tive learning approach leads to a surrogate model with lower
NMSE.

Table 3: Comparison of normalized mean squared error for
the different approaches

Method NMSE
Gaussian Process - AL 5.94

Gaussian Process 16.01
Neural Network 30.84
Decision Tree 29.46

Random Forest 21.48

Finally we evaluate the active learning approach on op-
timally initializing GBD. We compare the Gaussian process
obtained via active learning with the surrogate models trained
via random sampling of 110 data points from the pool. The
average solution time for the different surrogate models is
presented in Table 4. From these results we observe that the
surrogate model obtained via active learning outperforms the
other surrogates. Specifically, the active learning approach
leads on average to 66.5% reduction in CPU time, whereas
the Gaussian process, neural network, random forest and de-
cision tree lead to 53%,43%,51% and 33% respectively. Ad-
ditionally for the 100 random disturbances considered, the
solution time obtained from the active learning approach is
always lower than the solution time without the addition of
cuts. This is not true for the other surrogate models, for ex-
ample using the random forest as surrogate can lead up to
26% increase in CPU time compared to the solution of the
problem without the addition of cuts.

Table 4: Computational time for the proposed approach for
different surrogate models. NC refers to solving the problem
without the addition of cuts in the first iteration.

Solution
statistics

Initalization strategy
NC GP-AL GP NN RF DT

Aver. CPU time 13.7 4.31 6.22 7.67 6.34 9.11
Aver. red. - 66.5 53.44 43.52 51.61 33.64

Aver. fold red. - 3.33 2.49 2.18 2.38 1.75
Max. red. (%) - 81.3 81.41 79.57 81.96 77.55
Min. red. (%) - 0.09 -2.66 -0.02 -26.47 -18.82
Max fold red. - 5.35 5.38 4.48 5.54 4.45
Min fold red. - 1.00 0.97 0.99 0.79 0.84

Conclusions

Generalized Benders Decomposition has been widely
used to solve large scale optimization problems. However
the implementation of the algorithm is nontrivial. In this
work we considered the optimal initialization of GBD for the
repeated solution of problems where the parameters of the
subproblem do not change. First we proposed a supervised
learning approach to learn a surrogate model that estimates
the CPU for given parameters of the problem and number of
cuts. Although this approach can lead to 70% reduction in
CPU time, the generation of the dataset to train the surrogate
model can be a bottleneck. To overcome this obstacle we
proposed the application of active learning. The results show
that active learning can be used to efficiently train a surrogate
model to estimate the effect of cuts on the solution time.
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