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Abstract

There are a number of excellent tools for multivariable and nonlinear classification and regression tasks

that are commonly employed in chemical process control and related disciplines such as chemometrics.

However, these tools have not made a broad impact in biomedical and human health applications, where

the majority of researchers resort to traditional, linear, univariate statistics to attempt to describe very

complex phenomena. In complicated diseases such as autism spectrum disorder, it is imperative that re-

searchers look beyond these traditional techniques and embrace more appropriate statistical techniques in

order to better describe and report their findings. Furthermore, the disparity in findings between research

groups encourages the use of validation procedures such as cross-validation to better ensure that results

generalize to new data sets. This work showcases the use of partial least squares and Fisher discriminant

analysis, as well as their kernel counterparts, for biomarker discovery in autism spectrum disorder. These

techniques are able to separate participants into autism spectrum disorder and neurotypical subgroups

and predict disease severity better than other approaches in the scientific literature. The wealth of sta-

tistical tools available to the chemical process community can provide great impact in non-traditional

areas.
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Introduction

Increased global competition coupled with ever-

tightening process safety, product quality, and environ-

mental pollution targets has promoted the increased

complexity of chemical processes as well as the amount

of frequently recorded process data. These increases

in data size and complexity also increases the diffi-

culty of effectively process monitoring by plant oper-

ators (Kruger and Xie, 2012). Multivariable statisti-

cal process monitoring tries to address this problem

by uncovering the usually small number of underlying
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trends hidden in this complex data and present the data

in ways that are easier to visualize and comprehend.

Although early work focused on improvements in the

chemical process industries (e.g. (Piovoso et al., 1992;

Morud, 1996)), multivariable statistical process moni-

toring has since impacted other manufacturing sectors

including pharmaceutical (Gernaey et al., 2012), food

(Grassi et al., 2014), semiconductor (Cherry and Qin,

2006), automotive (Haghani et al., 2016), and mettalur-

gical (Zhou et al., 2016) applications.

Just as the early chemical process industry relied on

linear, univariate process monitoring, medicine tradi-

tionally relies on one measurement to separate individ-



uals into healthy and disease cohorts. Examples include

specific genetic mutations that lead to Tay-Sachs dis-

ease (O’Brien et al., 1971) or sickle-cell disease (Rees

et al., 2010) and observations of single biochemical enti-

ties such as C-peptide level to measure loss of beta cell

functionality in type 1 diabetes (Palmer et al., 2004).

However, researchers studying diseases with complex

and/or unknown etiology such as autism spectrum dis-

order (ASD) can often not find one measurement to sep-

arate the ASD and neurotypical cohorts. Moreover, in-

teractions and nonlinearities may be important to the

healthy or disease state (e.g. in heart rate time series

(Goldberger et al., 2002)), making a case for the intro-

duction of nonlinear methods. Therefore, multivariate

statistical process monitoring methods have potential to

make sense of these multiple measurements and present

underlying trends in a way that can aid doctors in the

diagnosis process.

ASD encompasses a large group of early-onset neuro-

logical diseases characterized by difficulties with social

communication/interaction and expression of restricted

repetitive behaviors and interests (American Psychiatric

Association, 2013). In addition to these defining behav-

ioral symptoms, individuals with ASD frequently have

one or more co-occurring conditions, including intel-

lectual disability, ADHD, speech and language delays,

psychiatric diagnoses, epilepsy, sleep disorders, and gas-

trointestinal problems (Levy et al., 2010; Perrin et al.,

2012; Pulcini et al., 2015; Saunders et al., 2015). The

prevalence of ASD has been increasing at an alarming

rate especially when comparing with other developmen-

tal disabilities (Braun et al., 2015) and ASD is currently

estimated to affect 1.5% of the population (Centers for

Disease Control and Prevention, 2012). It is associated

with an impaired quality of life van Heijst and Geurts

(2015) and the lifetime cost of supporting an individ-

ual with ASD amounts to $1.4 2.4MM, depending on

co-existing disorders Buescher et al. (2014).

Currently, both the etiology and pathophysiology

of ASD are uncertain. Since genetic contributions to

ASD have recently been estimated at 37–55% (Gau-

gler et al., 2014), many hypotheses surrounding pos-

sible environmental explanations have been proposed,

including decreased neural synapse formation (Brig-

andi et al., 2015), altered folate-dependent one carbon

metabolism (FOCM) and transsulfuration (TS) (James

et al., 2004), and altered microbiota compositions (Mac-

Fabe, 2012). All of these proposed mechanisms involve

complex mechanisms that are unlikely to be described

by a single variable.

Latent variable techniques enable the discovery of

important multivariate interactions, leading to improved

classification and regression performance. Furthermore,

latent variable techniques allow assessing the impor-

tance of individual variables and are more robust to

uninformative variables. One popular latent variable

technique for classification problems is Fisher Discrimi-

nant Analysis (FDA), which achieves an optimal linear

separability using a typically small set of latent vari-

ables that are linear combinations of the original vari-

able set. FDA has a long history in biological classi-

fication problems and was first used by Rao in 1948

to interpret anthropological data (Rao, 1948). Exten-

sions of FDA, such as Kernel FDA (KFDA), exist which

can take nonlinear relationships into account for classi-

fication (Mika et al., 1999). Latent variable regression

techniques include partial least squares (PLS) and its

nonlinear counterpart kernel PLS (KPLS) (Rosipal and

Trejo, 2002). Using FDA for classification and KPLS

for regression allow multivariate interactions to surface,

which are often hidden when only univariate analysis is

considered. To guarantee a statistically independent as-

sessment of the multivariate classification and regression

models, the presented study utilizes a cross-validatory

approach, where the set of samples used for model iden-

tification does not contain samples to evaluate the per-

formance of the identified models.

The presented work makes use of these advanced

modeling and statistical analysis tools to examine

metabolite data of FOCM/TS pathways in neurotypical

participants (NEU) and those on the autism spectrum

(ASD) as well as their siblings (SIB). Using FDA, it is

possible to clearly distinguish the participants on the

spectrum from their neurotypical peers and KPLS un-

veils a strong correlation between metabolite concentra-

tions of these pathways and autism severity as measured

by the Vineland Adaptive Behavior Composite. This

work not only analyzes the largest data set of its kind of

these pathways in the scientific literature (Melnyk et al.,

2012), but also results in the strongest evidence to date

of the association of FOCM/TS dysfunction with ASD.

Description of Data

The data used in this study comes from the Arkansas

Children’s Hospital Research Institute’s autism IMAGE

study (Melnyk et al., 2012). The protocol was approved

by the Institutional Review Board at the University of



Arkansas for Medical Sciences and all parents signed in-

formed consent. FOCM/TS metabolites from 83, 47,

and 76 case (ASD), sibling (SIB), and age-matched con-

trol (NEU) children, respectively, were used for classi-

fication. The metabolites under investigation are tabu-

lated in Table 1 and additional details of these measure-

ments and derivations are presented in (Melnyk et al.,

2012). Of the 83 participants on the autism spectrum,

55 also had Vineland II Scores recorded for use in re-

gression analysis.

Table 1. Metabolites considered for analysis

Methionine SAM

SAH SAM/SAH

% DNA methylation 8-OHG

Adenosine Homocysteine

Cysteine Glu.-Cys.

Cys.-Gly. tGSH

fGSH GSSG

fGSH/GSSG tGSH/GSSG

Chlorotyrosine Nitrotyrosine

Tyrosine Tryptophane

fCystine fCysteine

fCystine/fCysteine % oxidized glutathione

Classification into ASD, SIB, and NEU cohorts

Associating dysfunction of FOCM/TS pathways

with ASD requires a distinction between or separation of

ASD and NEU groups based on FOCM/TS metabolites.

Therefore, cross-validatory FDA was performed using

measurements of the FOCM/TS metabolites listed in

Table 1. A linear classifier based on these FDA scores is

then used to classify ASD and NEU participants. FDA

scores and estimated probability distribution functions

(PDFs) are provided in Figure 1. The cross-validated

misclassification rates of only 4.9% and 3.4% for the

NEU and ASD samples, respectively, eliminated more

complex, nonlinear KFDA analysis from consideration.

The performance of the classifier was then evalu-

ated on the SIB cohort, a more challenging classifica-

tion problem due to partially shared genetic and envi-

ronmental effects with the ASD cohort. Using all mea-

surements in Table 1, an FDA model was trained to

separate the ASD and NEU cohorts. Then, the trained

FDA model was used to evaluate the SIB cohort (which

was not used for training). The resulting separation

of ASD, NEU, and SIB presented in Figure 2 shows a

Figure 1. Classification into ASD and NEU cohorts

using FDA on all FOCM/TS metabolites. The plotted

scores were obtained via cross-validation and the proba-

bility distribution functions were obtained from fitting.

slight increase in the overlap with the ASD cohort when

compared with the performance of the ASD vs. NEU

classification. Furthermore, the SIB PDF shows sig-

nificantly more overlap with the NEU PDF than the

ASD PDF. These results support the hypothesis pro-

posed by Melnyk et al. (2012) that the siblings of the

participants on the spectrum have FOCM/TS metabo-

lite profiles that are significantly more similar to their

neurotypical peers than their siblings, even though ge-

netically they are likely closer to their siblings than par-

ticipants in the neurotypical control group.

Figure 2. Classification performance on the SIB cohort.

There is significantly more overlap of the SIB cohort

with the NEU cohort than with the ASD cohort.

Prediction of ASD severity

In addition to separation into neurologically distinct

cohorts, metabolites in the FOCM/TS pathway were in-

vestigated for predictability of autism severity. Due to

the inter-dependency of pathway metabolites and pos-



sible nonlinear effects on psychological outcomes, non-

linear regression via KPLS was used to evaluate the

ability of pathway metabolites to predict ASD sever-

ity (as measured by the Vineland Adaptive Behavior

Composite score). All combinations of a given num-

ber of variables were evaluated for predictability. The

cross-validatory R2 of the regression was then used to

determine the optimal number of variables in the regres-

sion analysis. From the results in Figure 3, the R2 be-

gins to decrease when more than five variables are used

in the KPLS analysis. The maximum cross-validatory

R2 was 0.45, corresponding to the KPLS model with

the variable combination GSSG, tGSH/GSSG, Nitroty-

rosine, Tyrosine, and fCysteine used as inputs. These

regression results are plotted in Figure 3. (It is im-

portant to note that a few other variable combinations

provided similar results, but only the best regression

model is illustrated for clarity.) This strong correlation

even after cross-validation indicates the importance of

FOCM/TS dysfunction in the pathophysiology of ASD.

Figure 3. KPLS regression results: (a) maximum

cross-validated R2 for a given number of variables and

(b) cross-validated model predictions versus actual data

points for the best combination of five variables (GSSG,

tGSH/GSSG, Nitrotyrosine, Tyrosine, and fCysteine).

Discussion

The multivariate statistical analysis presented herein

provides unprecedented quantitative classification re-

sults for separating participants into ASD and NEU

cohorts based solely on biochemical data. Existing

analyses report differences in mean metabolite levels

or provide qualitative illustrations of separating these

two groups based on FOCM/TS metabolites (James

et al., 2006, 2004; Melnyk et al., 2012). However, these

strategies are not designed for classification and thus

fail to successfully classify participants. Here, FDA on

seven metabolites allows sufficient separation such that

a linear classifier can correctly resolve 96.9% of partic-

ipants. Such low misclassification rates dissuaded the

use of more complex, nonlinear methods such as KFDA.

Although FOCM/TS dysfunction likely does not com-

pletely detail ASD etiology, this biochemical analysis

approaches the accuracy needed for a clinical diagnostic

tool.

Classification performance on the SIB group fortifies

the argument for FOCM/TS involvement in ASD since

the large degree of shared genetic and environmental

effects with the ASD population only slightly worsens

the separation. The sibling recurrence rate for ASD

is estimated to be 6.9–18.7% (Grønborg et al., 2013;

Ozonoff et al., 2011; Constantino et al., 2010) and many

siblings perform behaviorally and/or cognitively at in-

termediate levels between those of ASD and NEU co-

horts (Constantino et al., 2010; Gizzonio et al., 2014;

Ruzich et al., 2016) or express traits characteristic of

ASD (Ruzich et al., 2016; ?; ?). Therefore, the classifi-

cation performance placing the SIB group between the

ASD and NEU groups, albeit much closer to the NEU

group, is consistent with the broader scientific literature

on psychometric analysis of siblings of people with ASD.

Nonlinear regression analysis of FOCM/TS metabo-

lites enables prediction of key FOCM/TS metabolites

that are associated with ASD severity. Based upon all

variable combinations evaluated in the KPLS regression

analysis, top-performing models always incorporated (1)

nitrotyrosine, (2) tyrosine, (3) fGSH or tGSH/GSSG,

and (4) fCysteine or fCystine/fCysteine. Interestingly,

these variables are affected by high quality vitamin sup-

plementation that also decreases ASD severity in at least

a subset of cases (Frye et al., 2013; James et al., 2009;

Adams et al., 2011).

Developmental pediatricians, psychologists and

other professionals can effectively use the wealth of in-

formation provided by psychometric instruments such as

the Vineland Adaptive Behavior Composite to diagnose

and treat patients with ASD. However, these tests can

rarely diagnose children under two years old since they

are based solely on behavioral assessment. As it is gen-

erally acknowledged that an earlier diagnosis can lead to

a more favorable outcome in the long run (Zwaigenbaum

et al., 2013), the identification of biomarkers which can

be used in conjunction with psychometric measurements

would be of significant importance for ASD diagnosis.

Furthermore, identification of these biomarkers can fa-

cilitate the understanding of these complex disorders,

which offers significant potential for developing interven-

tion strategies targeted to normalize these biomarkers in



the future. However, it is important to note that these

biomarkers may not simply be measurements of certain

metabolites but may require nonlinear statistical analy-

sis of the measurements, as is done in this work.
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