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Abstract 

This paper explores the optimal operation of a distributed ammonia production facility which is coupled 

with local renewable energy generation. The coupling of stochastic renewables with this flexible chemical 

process enables exchange of energy with the utility in a highly regulated and benign manner. In particular, 

we analyze the ability of this facility to operate economically under a market structure which explicitly 

limits uncertainty and variability in energy exchanged with the macrogrid.  A receding horizon control 

approach is formulated to optimally schedule local units and ensure that production targets and regulatory 

requirements are satisfied. The cost of regulating this energy exchange is shown to be minimal and the 

variability and uncertainty of energy exchange is shown to be significantly reduced. In addition, we show 

that a clear tradeoff emerges between the ability to sell excess power to the utility and the ability to meet 

previous power commitments when increasing renewables penetration. 
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Introduction

Distributed production of fuels, chemicals, and 

electricity close to points of demand reduces transportation 

costs and losses, facilitates the incorporation of dispersed 

renewable feedstocks (e.g. wind and solar), and makes the 

infrastructure more resilient to catastrophic failures or 

extreme weather events. However, the variability and 

stochasticity introduced by renewables can be challenging 

to mitigate. In the context of renewable electricity, end users 

who employ local generation (a.k.a. prosumers) typically 

rely on a utility company to correct any imbalance between 

expected and realized renewables output. This increases 

uncertainty for utility companies, and may require a 

significant increase in the reserve margins and control effort 

for large power plants (Brouwer et al., 2015). These 

externalities decrease system-wide efficiency, increase 

electricity generation costs, and are counterproductive from 

an environmental perspective. 
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Previous authors have investigated a variety of ways to 

achieve utility-friendly operation of these distributed 

energy systems. The simplest way to achieve utility-

friendly operation is to explicitly minimize, or entirely 

forbid, energy exchange between the distributed system and 

external utility (e.g. Teleke et al., 2010; Trifkovic et al., 

2014). However, these stand-alone systems are significantly 

more expensive to own and operate since generation and/or 

storage units must be over-sized to mitigate stochasticity 

(Zachar et al., 2015; Alipour et al., 2015). Another approach 

is to have prosumers actively participate in the electricity 

market, e.g. via bidding in the wholesale market as in Liu et 

al.  (2016) or via iterative negotiation with the utility as in 

Wang et al. (2015). These approaches reduce the 

uncertainty in energy exchange, as real-time purchases are 

discouraged, but they do not explicitly address the 

variability introduced by renewables. Moreover, market 

operations, e.g. market clearing which is formulated as a 



  

 

large-scale mixed integer problem, may scale poorly with 

the number of active participants. Other common 

approaches, such as introducing peak shaving constraints 

(Riffonneau et al., 2011) or applying demand charges 

(Zhang et al., 2013), partially address the challenges related 

to the variability and uncertainty in the energy exchange of 

these prosumers, but do not approach this problem in a 

holistic manner.  

Motivated by this, we have proposed a 

market/regulatory framework for prosumers which seeks to 

address these issues and minimize the impact on the utility 

company (Zachar and Daoutidis, 2016). In particular, 

prosumers are obligated to explicitly limit the uncertainty 

and variability in their residual load (i.e. the load satisfied 

by the utility) by providing a day-ahead commitment.  In 

this framework, tunable market parameters can be used to 

regulate the amount of stochasticity each party (i.e. the 

prosumer and the utility) must mitigate. In our preliminary 

examination of this market structure, we found that meeting 

commitments solely with typical microgrid units (i.e. 

microturbines and a battery) was very expensive for 

prosumers. In this work, we seek to modify our approach by 

considering a controllable load which can enable flexibility 

to meet energy exchange commitments at lower opportunity 

cost.  

In this case, obvious parallels can be drawn to the field 

of demand-side management (DSM).  In DSM, energy 

intensive customers (typically large industrial customers) 

are offered incentives to schedule their power consumption 

in a utility-friendly manner.  Typical DSM activities include 

dynamic operation of a plant in response to time-varying 

electricity prices or demand charges (e.g. Pattison et al., 

2016), offering interruptible load capacity to offset demand 

uncertainty (e.g. Zhang et al., 2016), and explicit load-

shaping via direct negotiation between the utility and 

industrial customer (e.g. Nolde and Morari, 2010).  An 

important difference in the case of prosumers is the 

presence of local generation, and, in particular, local 

renewables which increase stochasticity in the control and 

scheduling problems.  Some further comparison of DSM 

and our approach are given in the Market Structure section. 

Chemical processes provide a power load which is 

controllable and typically contains some inherent 

flexibility. In particular, this work considers small scale, 

distributed ammonia production as the electrical load. 

Distributed ammonia production is an attractive process as 

the process features high flexibility in hydrogen and 

nitrogen production and the product features an inherently 

dispersed demand profile. In previous work, we analyzed 

the potential to incorporate distributed renewable-based 

ammonia plants into the existing supply chain, and showed 

that such plants can be economically competitive at a large 

scale depending on the market conditions and policy 

incentives (Allman and Daoutidis, 2016). We further 

concluded that to make smaller scale, distributed plants 

economically viable, further improvements to the 

economics, such as improving the operating cost through 

scheduling, were required. In this work, we focus on the 

operational aspects of such a renewable ammonia plant in 

concert with the proposed market structure for prosumers. 

In what follows, we formally describe this proposed 

market structure. Then, we describe the system considered 

and formulate a receding horizon optimization problem for 

its dynamic scheduling. Next, we study the impact of the 

market structure on the process economics and evaluate the 

improvements in the residual load characteristics. Finally, 

we conclude with some important observations. 

Market Structure 

The proposed market structure is an extension of a 

simple tariff structure where the rates for buying and selling 

power are known to the prosumer a priori.  However, the 

prosumer is required to provide energy exchange 

commitments to the utility company for each 1-hour period 

over which energy exchange will be metered.  These 

commitments must be relayed to the utility at least 24 hours 

before the start of the relevant time period.   

During real-time operation, the utility is assumed to 

provide any needed balancing power, even if it results in a 

deviation from the established commitment.  Prosumers are 

allowed some small deviation from the commitment value 

without penalty as governed by the schedule elasticity 

parameter: 

𝑝𝑣(𝑡) = max(0, 𝑝𝑐(𝑡) − 𝑝𝑔(𝑡) −  𝛾) 

+ max(0, 𝑝𝑔(𝑡) − 𝑝𝑐(𝑡) −  𝛾) (1) 

where pc is the commitment value, pg is the realized 

power exchange, γ is the schedule elasticity, and pv is the 

commitment violation.  Prosumers are economically 

penalized (i.e. fined) if this deviation is larger than the 

allowed schedule elasticity (i.e. if pv>0). 

 In addition, adjacent commitments must be close in 

value to each other as governed by the schedule adaptability 

parameter:   

𝑝𝑐(𝑡 − 1) −  𝛿 ≤  𝑝𝑐(𝑡) ≤ 𝑝𝑐(𝑡 − 1) +  𝛿 (2) 

where δ is the schedule adaptability.  

This problem is similar to industrial load shaping (e.g. 

Nolde and Morari, 2010).  An important difference is that 

small deviations from the commitments are allowed (due to 

the difficulty of completely mitigating renewables on a 

local scale).  Moreover, commitment values are unilaterally 

determined by the prosumer since direct negotiation 

between the utility company and a large number of 

prosumers is not scalable.  Finally, unlike market 

mechanisms like demand charges, the proposed market 

structure places explicit limits on the uncertainty and 

variability in the energy exchange profile. Further 

discussion of this proposed market structure can be found 

in Zachar and Daoutidis (2016).   

Model Formulation 

A distributed ammonia production facility is considered 

based on Reese et al. (2016).  It consists of an air separation 

unit, electrolyzers, an ammonia generation unit (based on 

the Haber-Bosch process), and chemical inventory storage 

units.  Power is generated locally by wind turbines.  Any 

imbalance is rectified via power exchange with the 



  

macrogrid.  The flow of energy and materials in the system 

considered is shown Figure 1. 

During operation, the goal is to minimize the cost of 

meeting local ammonia demand, avoid violation of 

previously established energy exchange commitments, and 

optimally make new commitments. Operating cost is 

minimized over a 48 hour receding horizon, optimized 

repeatedly every hour over the course of a year: 

𝑂𝑝 =  ∑ (𝜁𝑏𝑝𝑏(𝑡) − 𝜁𝑠𝑝𝑠(𝑡) + 𝜁𝑒𝑙�̇�𝐻2
(𝑡)+𝜁𝑝𝑠𝑎�̇�𝑁2

(𝑡)

48

𝑡=1

+ 𝜁𝑠𝑢𝑛𝑠𝑢(𝑡) + 𝜁𝑢𝑝 (𝜏 − �̇�𝑁𝐻3
(𝑡))

+ 𝜁𝑣𝑝𝑣) + 𝜁𝑁(𝑚𝑁2
(0) − 𝑚𝑁2

(48))

+ 𝜁𝐻(𝑚𝐻2
(0) − 𝑚𝐻2

(48)) 

 (3) 

 

Equation (3) shows the objective function, which is the sum 

of the cost of buying (or selling back) power, operating 

costs for the electrolyzer and pressure swing adsorption 

(PSA) units, costs for starting up electrolyzers, penalty costs 

for underproducing ammonia, penalty costs for violating 

previously made power commitments, and penalty costs for 

using hydrogen or nitrogen from storage. Symbol 

nomenclature is shown in Table 1. Realized costs are 

calculated based on the implemented decisions determined 

by the first time period results in each iteration, excluding 

the penalties related to using gas from storage and 

underproducing ammonia. 

During operation, the set point of the ammonia 

generation process is changed only every 12 hours.  At the 

end of each day, the target ammonia production level is 

adjusted based on the amount of realized production over 

the previous day. Production below this target value is 

penalized. The rate of ammonia generation can vary 

between 75% and 110% of the nominal production rate. 

All other units are dispatched on an hourly basis. An 

integer number of 2 MW electrolyzers are used which must 

operate between 30% and 100% capacity when turned on.  

The PSA unit can vary between 0% and 100% of its nominal 

production rate.  Hydrogen and nitrogen can be pressurized 

Table 1 - List of objective function symbols and definitions 

and stored. The nominal output rates from storage to the 

ammonia process for N2 and H2 are defined with respect to 

the nominal NH3 production rate by the reaction 

stoichiometry.  

A nominal power balance is used to relate the power 

consumption from the ammonia generation system, the 

expected wind power, and the expected energy exchange 

with the utility: 

𝜇(𝑡) =  𝑝𝑠(𝑡) − 𝑝𝑏(𝑡) + 𝜌𝐻�̇�𝐻2
(𝑡) + 𝜌𝑁�̇�𝑁2

(𝑡) 

  + 𝜌𝐴�̇�𝑁𝐻3
(𝑡) (4) 

In Eq. (4), µ is the forecasted wind power and ρi is the 

conversion factor between power and mass of component i. 

Forecasted wind power is determined adding white noise to 

the TMY3 wind speeds for Morris, MN, extrapolated to a 

hub height of 80m using a 1/7 power law expression. The 

standard deviation of the noise increases as times further 

into the 48-hour horizon are considered.  

In addition, we define upper and lower bounds on 

hydrogen and nitrogen generation.  This process flexibility 

is obtained by varying the production schedule of H2 and N2 

without changing the total production. The ability to shift 

H2 and N2 production is bounded by the ability to make up 

production in different hours while still meeting the 12-hour 

ammonia production schedule, the maximum (and 

minimum) production rates and maximum (and minimum) 

storage capacities: 

�̇�𝑙𝑜,𝐻2
(𝑡) ≥ ∑ (�̇�𝐻2

(ℎ) −
𝑛𝑜𝑛(ℎ)𝑝𝑒𝑙,𝑚𝑎𝑥

𝜌𝐻
) + �̇�𝐻2

(𝑡)12
ℎ=1
ℎ≠𝑡

  

 (5) 

 

�̇�𝑙𝑜,𝐻2
(𝑡) ≥ �̇�𝐻2

(𝑡) − 𝑚𝐻2
(𝑡) + 𝑚𝑚𝑖𝑛,𝐻2

 (6) 

 

�̇�𝑙𝑜,𝐻2
(𝑡) ≥

𝑛𝑜𝑛(𝑡)𝑝𝑒𝑙,𝑚𝑖𝑛

𝜌𝐻
 (7) 

Equations (5-7) show the inequalities used for the lower 

bound of hydrogen production, where non is the number of 

electrolyzers on, pel,i is the maximum or minimum capacity 

of a single electrolyzer, and mmin,H2 is the minimum storage 

level of hydrogen. In these equations, hydrogen production 

at time t is bounded below by the amount of hydrogen that 

would still need to be produced if electrolyzers were 

running at maximum capacity for all other 47 hours, the 

minimum storage capacity of hydrogen, and the minimum 

power that can be given to the electrolyzers. Analogous 

equations are used for upper bounds of hydrogen production 

and for flexible nitrogen production. These upper and lower 

bound values are used in the following power balance 

inequalities: 

Symbol Definition 

𝒑𝒃, 𝒑𝒔 Power bought or sold from macrogrid 

𝒑𝒗 Magnitude of violation of power commitment 

𝒎𝒊̇  Mass flowrate of component i 

𝒎𝒊 Amount of component i in storage 

𝒏𝒔𝒖 Number of electrolyzers starting up 

𝝉 Target ammonia production rate 

𝜻𝒋 Cost parameter for j 

Figure 1 - Mass and energy flow in the system. 



  

 

𝑝𝑐(𝑡) +  𝛾 + 𝑝𝑣(𝑡) − 𝜌𝐻�̇�𝑙𝑜,𝐻2
(𝑡) − 𝜌𝑁�̇�𝑙𝑜,𝑁2

(𝑡) 

−𝜌𝐴�̇�𝑁𝐻3
(𝑡) ≥  −𝜇(𝑡) + 1.96𝜎(𝑡) (8) 

 

𝑝𝑐(𝑡) −  𝛾 − 𝑝𝑣(𝑡) − 𝜌𝐻�̇�ℎ𝑖,𝐻2
(𝑡) − 𝜌𝑁�̇�ℎ𝑖,𝑁2

(𝑡) 

−𝜌𝐴�̇�𝑁𝐻3
(𝑡) ≥  −𝜇(𝑡) − 1.96𝜎(𝑡)  (9) 

Equations (8-9) ensure that sufficient process flexibility is 

available to utilize all available wind power with at least a 

95% confidence level, where σ are the forecasted wind 

power and standard deviation, respectively. 

The resulting scheduling problem is formulated as a 

mixed integer linear program in the GAMS programming 

environment and solved via the CPLEX solver.  Integer 

decisions include the number of electrolyzers turned on, and 

if an electrolyzer should be turned on or off at a given time 

period.  

Case Study 

Market Participation 

The capacity to leverage process flexibility to 

effectively participate in the proposed market structure is 

explored by varying the market parameters (i.e. schedule 

elasticity and adaptability) with fixed unit sizes.  For this 

case, the nominal NH3 production rate is taken to be 1000 

kg/h (resulting in a total nominal power consumption of 

13.34 MW). This gives an annual production of 8760 t/y, 

which is on the scale of ammonia demand for 1-2 counties 

in the upper Midwest, or 160,000 acres of corn farms. The 

maximum N2 and H2 storage levels are 4522 kg and 808 kg, 

equivalent to 20 m3 and 50 m3 of storage, respectively, at 

200 bar.  The minimum storage level is taken as 1 bar of 

storage.  Up to 7 electrolyzers are available for H2 

generation, and a 1.8 MW PSA unit is included for N2 

generation  The wind power capacity is taken to be 15 MW, 

where this size was chosen to offset ~27% of the annual 

power consumption. Fixed electricity pricing was 

considered where power can be bought from or sold to the 

utility at 7.917 ¢/kWh and 3.565 ¢/kWh, respectively.  A 

base case in which no regulatory/market constraints (i.e. 

schedule elasticity and adaptability = ∞) is used for 

comparison.   

Optimal Sizing 

Synergies between the renewable power generation and 

chemical synthesis, as well as the tradeoffs that occur when 

varying power or storage capacity, are explored by varying 

the number and sizes of the process units at fixed market 

parameters. Wind turbine capacity is analyzed with a 

schedule elasticity and adaptability of 1000 kWh, while 

electrolyzer capacity is analyzed with a schedule elasticity 

and adaptability of 500 kWh. 

Results and Discussion 

Market Participation 

The regulatory requirements imposed by the market 

structure have little impact on the cost.  The annual cost is 

typically within 1% of the base case value, and the cost is 

only 2.1% higher when the schedule elasticity and 

adaptability are both set as low as 500 kWh.  Thus, unlike 

the microgrid-only case considered in Zachar and Daoutidis 

(2016), the system considered here is able to effectively 

regulate energy exchange with the utility at practically no 

opportunity cost. 

The proposed market structure is effective at reducing 

uncertainty in the residual load.  Figure 2 shows the 

cumulative annual magnitude of commitment violations.  In 

all cases, these are small relative to the cumulative annual 

residual load which is ~85000 MWh. 

 
Figure 2. Cumulative commitment violations. 

The proposed market structure also reduces the short-

term volatility in the power load, quantified here in terms of 

load variability and load curvature: 
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Load Curvature = 
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where pg is the residual load served by the utility. When 

these parameters are lower, it implies that the utility needs 

to do less ramping of its power to be able to balance the 

load, leading to more efficient operation. 

Figures 3 and 4 show the case study results for these 

metrics.  These values are well below the base case values 

shown on the figures.  Long term variations in the residual 

load are analyzed in terms of the load factor and range: 

Load Factor  
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Load Range    max ( ) min ( )g g
tt

P t P t    (13) 

However, the results for these values are not significantly 

different from the base case values of 0.55 and 24,800 kW 

for load factor and range, respectively.   
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Figure 3. Residual load variability. 

 
Figure 4. Residual load curvature. 

Therefore, the utility’s capacity requirements and 

annual utilization factor for power plants would remain 

unaffected by this market structure, but short-term ramping 

and reserve margins could be significantly reduced.  

Optimal Sizing 

To examine the effect of unit sizing, wind turbine 

capacity is varied while keeping all other system and market 

parameters the same. When examining the effect of wind 

capacity on the realized operating cost, a clear tradeoff 

emerges. Additional wind capacity allows for more selling 

of power back to the utility, a benefit for the system, but 

also incurs larger and more frequent commitment 

violations. This is an additional system cost resulting 

directly from the stochasticity of the wind resource. This 

tradeoff causes the realized cost to reach a minimum value 

at 22.5MW of wind capacity built. Note that this cost figure 

only includes operation cost, and not the annualized capital 

cost required to build the wind capacity or partner with 

existing wind capacity. Figure 5 shows the realized cost and 

cumulative violations vs. wind capacity.  

Unit sizing also has a small impact on the variability of 

the residual load profile. As expected, long term variability 

increases with increased wind capacity, evidenced by 

Figure 5. Realized cost and commitment violations vs. 

installed wind capacity. 

increasing load ranges and decreasing load factors. Figure 6 

shows that the short-term variability also increases with 

increasing wind capacity; however, no definitive trend is 

seen with the load curvature. Note that the low curvature 

and high variability seen for high wind capacity cases 

suggest a more linear load profile, indicating that the market 

structure is limiting the system’s ability to take full 

advantage of the differences in wind power. Instead, the 

load profile varies at the maximum value allowed by the 

schedule adapatability for many time points. Conversely, 

the high curvature and low variability seen at low wind 

capacities indicates that the system can adjust its residual 

load more freely, without the constraint from the schedule 

adaptability parameter limiting these variations. These 

trends make sense due to the fact that increased wind 

capacity increases the magnitude of stochasticity in the 

system. 

 
Figure 6. Load variability and curvature vs. installed wind 

capacity. 

The effects of electrolyzer capacity are also analyzed by 

varying number of installed electrolyzers while holding all 

other parameters constant. Installing additional 

electrolyzers imparts a higher capital cost but gives the 

system additional flexibility to use more wind energy to 

produce hydrogen. A minimum of 6 electrolyzers are 

needed to supply a nominal ammonia capacity of 1000 kg/h. 

500 1000 1500 2000
0

1000

1500

2000

2500

3000

L
o

ad
 C

u
rv

at
u

re
 (

k
W

)

Schedule Adaptability (kWh)

Base Case: Load Curvature = 10,830 kW

 Schedule Elasticity = 500 kWh

 Schedule Elasticity = 750 kWh

 Schedule Elasticity = 1000 kWh

 Schedule Elasticity = 1500 kWh

 Schedule Elasticity = 2000 kWh

500

600

700

800

900

1000

1100

0 10 20 30

Lo
ad

 C
u

rv
at

u
re

/V
ar

ia
b

ili
ty

 (
kW

)

Installed Wind (MW)

Variability

Curvature

500 1000 1500 2000
0

500

750

1000

1250

1500
L

o
ad

 V
ar

ia
b

il
it

y
 (

k
W

)

Schedule Adaptability (kWh)

Base Case: Load Variability = 4,780 kW

 Schedule Elasticity = 500 kWh

 Schedule Elasticity = 750 kWh

 Schedule Elasticity = 1000 kWh

 Schedule Elasticity = 1500 kWh

 Schedule Elasticity = 2000 kWh

0

1000

2000

3000

4000

5000

6000

6

7

8

9

10

11

0 10 20 30

C
o

m
m

it
m

en
t 

V
io

la
ti

o
n

s 
(C

u
m

u
la

ti
ve

 M
W

h
)

R
ea

liz
ed

 C
o

st
 (

M
M

$
)

Installed Wind (MW)

Realized Cost

Commitment Violations



  

 

As shown in Figure 7, when the number of electrolyzers 

increases, the commitment violations and realized cost 

decrease. However, there are diminishing returns to 

continuing to add electrolyzers, as storage constraints can 

play a part in limiting the effect of additional electrolyzers. 

In practice, the reduced operating costs would need to be 

balanced with the additional capital costs incurred. 

  

Figure 7. Realized cost and commitment violations vs. 

number of electrolyzers. 

Conclusions 

In this paper, a market structure was proposed that 

required prosumers to limit the uncertainty and variability 

in their residual loads serviced by the utility. We applied 

this market structure to the distributed ammonia generation 

process and demonstrated that the market structure can be 

very effective at reducing uncertainty in the residual load at 

little additional cost of operation. We further explored the 

effects of wind turbine size for a given plant size and 

presented data displaying the clear tradeoff between ability 

to sell extra power and additional uncertainty of power 

generation. As future work, we intend to compare this 

market structure with others used for demand side 

management. 
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