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Abstract
This paper presents a parallel algorithm for obtaining global solutions to general math-
ematical programming problems with nonconvex constraints involving continuous vari-
ables. The proposed algorithm implements an optimization based bound tightening tech-
nique (Smith [1996], Ryoo and Sahinidis [1995], Adjiman et al. [2000]) in parallel on the
root node of the branch-and-bound tree structure. Upon obtaining the convex relaxation
of the original nonconvex nonlinear problem, it may be possible to tighten the bounds
on any variable by solving two convex optimization problems. The proposed algorithm
is implemented on a Heat Exchanger Network Synthesis problem (Yee and Grossmann
[1990]). Computational results demonstrate that variable contraction at the root node can
result in a substantial decrease in the number of partitions created when performing the
branch-and-reduce global optimization algorithm. Additionally, the solution time may
decrease significantly when this variable contraction is done in parallel. The proposed
parallel algorithm is implemented in multiple ways for comparison.
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INTRODUCTION

Systems engineering problems often require the solution
to problems which involve hundreds or even thousands of
variables. Typically these problems take the form of a large
nonlinear program. These problems may take a long time to
converge to the global solution when solved using the ex-
isting global optimization techniques. Deterministic global
optimization techniques have been developed to solve dif-
ficult optimization problems. Some of these methods in-
clude spatial branch-and-bound (Falk and Soland [1969],
Quesada and Grossmann [1993], Horst and Tuy [1993]),
outer-approximation (Fletcher and Leyffer [1994]), and
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branch-and-reduce (Ryoo and Sahinidis [1995]). This paper
presents a new parallel global optimization technique for
solution of general nonconvex, nonlinear problems. The
proposed algorithm makes use of both spatial branch-and-
bound and branch-and-reduce algorithmic techniques in
determining the global solution. In some examples, this
algorithm proves to be computationally faster than previous
methods. This paper is organized as follows: Section 2
describes the parallel contraction algorithm. Section 3 dis-
cusses some algorithmic design issues. Section 4 presents
the computational results with parallel contraction algo-
rithm implemented at root node of a branch-and-reduce
global optimization algorithm. Finally conclusions are pre-
sented in Section 5.
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Figure 1. Optimization Based Bound Tightening showing
variable contraction

Branch-and-bound techniques typically rely on generating
lower and upper bounds for a given partition in a search
tree. Lagrangian and feasibility based range reduction tests
(Ryoo and Sahinidis [1995]) applied to a partition helps
derive tighter variable bounds by eliminating infeasible
and suboptimal parts of the feasible region. In addition
to those techniques, optimization based bound tightening
(Smith [1996], Ryoo and Sahinidis [1995], Adjiman et al.
[2000]) shown in Figure 1 can be applied on the root node
of the branch-and-bound tree structure. Numerous methods
(Adjiman et al. [1998], McCormick [1976], Tawarmalani
and Sahinidis [2002], Gatzke et al. [2002]) have been
proposed to construct convex relaxations to the original
nonconvex problem. Once the convex relaxation for the
original nonconvex nonlinear problem is obtained, it is then
possible to tighten the bounds on any original variable xi by
solving two convex optimization problems formulated as :

min
x

±xi

s.t. f̂(x) ≤ ubd (1)

ĝ(x) ≤ 0

xl
≤ x ≤ xu

where f̂ , ĝ are relaxed objective function and constraints
and ubd is the current upper bound on the problem.

If this variable contraction is applied at the root node, the
number of partitions created when performing the branch-
and-reduce algorithm may significantly decrease, aiding in
quick convergence of the algorithm. This bound tightening
technique can be applied on each of the n original vari-
ables in the problem, which requires the solution of 2n
convex problems as shown in Figure 2 . In order to decrease
the computational burden and increase the efficiency and

speedup of the algorithm, the proposed optimization tech-
nique is implemented in parallel. This exploits the fact that
the optimization based bound tightening problems given in
Eq (1) are all decoupled from one another.

The parallel algorithm is implemented using a master/slave
paradigm, where the master keeps track of all the calcula-
tions and ensures that the slaves are doing useful work. The
standard Message Passing Interface (MPI) (Forum [1997])
is used for communication between the processors. The
master processor sends the original variable bounds of the
particular variable to be contracted to the slave processor.
The slave then solves the two convex optimization problems
given by Eq (1) and returns the new variable bounds to the
master. Multiple passes of these variables for contraction
may result in generating extremely tight bounds. This algo-
rithm is implemented on a Beowulf style computer using
CPLEX8.0 (ILOG [2002]) for solution of Linear Program-
ming (LP) problems. The machine has 32 nodes, each with
a single 933 MHz Pentium-3, 1Gbyte of memory, and 15
Gbytes of disk space.
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Figure 2. Optimization Based Bound Tightening Algorithm
( Serial and Parallel )

PARALLEL ALGORITHM FOR CONTRACTION OF
VARIABLES

The proposed bound tightening technique when applied
to the convex relaxation of the original nonconvex NLP
can significantly improve the lower bound on the prob-
lem before any global optimization algorithm is used for
obtaining the solution. This tightening procedure can take
a significant amount of time when solved using a single
processor. The key contribution is the implementation of
this procedure using multiple processors to minimize the
overall time required to solve the requisite 2n convex prob-
lems. Parallel optimization based bounds tightening can be
clearly explained by the following pseudo code where n is
total number of variables in the problem, p is the number of
optimization based passes, i is the loop iteration counter.



Search for upper bound to nonconvex NLP
Create convex relaxation of the nonconvex NLP
Tighten the bounds and generate new lower bound
While {(i < p) and (lbd for obj function < ubd for obj function)}

While {(processors are running) and
(variable to be contracted < n)}

While {(processors are available) and
(variable to be contracted < n)}

send the current lbd and ubd of the variable
to a free processor

End
If {processors are running}

receive the new lbd and ubd of the variable
from the slave processors

End
End
Tighten the bounds and generate lbd for
the problem using new variable bounds

End

Upon obtaining tighter bounds for the variables using the
newly proposed parallel algorithm, a serial or parallel
branch-and-reduce algorithm can then be used to search for
the global solution. Instead of contracting bounds of every
variable, selecting those variables which may contribute the
most to the gap between the original nonconvex problem
and the relaxed problem can prove to be as effective and
still reduce the computational burden. The ratios of the
difference in the current bounds and the difference in the
original bounds for all of the variables are computed. Those
particular variables with the worst (largest) ratios are then
selected for variable contraction.

ALGORITHMIC DESIGN ISSUES

There are many issues to consider with parallel program-
ming implementation. Even a perfect parallel program may
not always result in 100 percent efficiency because of var-
ious algorithmic design issues. A common problem at the
beginning of the parallel algorithm is the availability of
more processors than work units. The work load should
be balanced among all processors making sure some pro-
cessors are not idle. The time required to coordinate the
parallel tasks is another important issue to be considered.
Some common problems encountered are: initializing all
slave processors, loading the problem to be solved onto
the slave processors, the time required to actually carry
out the task, time required to terminate the started task,
and synchronization time. In many cases overhead due to
synchronization may consume wall clock time. Significant
amount of time is required for the communication between
the master and the slave processors. All these issues can
cause the parallel programs not to result in 100 percent
efficiency.

COMPUTATIONAL RESULTS

The proposed algorithm has been tested on several opti-
mization problems. For this paper the computational results
are only shown for a Heat Exchanger Network Synthesis

problem. For this problem, the objective is to minimize
the annual cost of the complete heat exchanger network
by finding which hot stream/cold stream, hot stream/cold
utility, and cold stream/hot utility are potentially matched
along with what heat loads are to be assigned to each
heat exchanger. Binary variables are introduced to represent
the existence of each heat exchanger. The heat exchanger
calculation introduces highly nonlinear terms in the ob-
jective function. The introduction of binary variables and
the nonlinearities make the given problem a Mixed Integer
Nonlinear program (MINLP). For the purpose of this paper,
the binary variables are fixed corresponding to the global
solution of the MINLP. By fixing the binary variables, the
problem is converted to a general nonconvex NLP.

The proposed algorithm is implemented several ways. In
case A, the optimization based bound tightening technique
is implemented sequentially for contracting the variable
bounds at the root node. After obtaining tighter bounds,
a serial global branch-and-reduce approach is used for
finding the global solution. The solution times for mul-
tiple optimization based variable bound contractions and
the lower and upper bounds of the objective function are
shown in Figure 3. It should be noted that gap between the
upper and lower bounds on the objective function decreased
significantly prior to performing the global search for the
solution. Note that the total solution time increases with
the number of contractions. This computational burden will
be decreased by the use of the newly proposed parallel
contraction algorithm.
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Figure 3. Solution times and the lower bounds on the
objective function shown for multiple passes of serial
optimization based bound tightening used with a serial
branch-and-reduce algorithm.

In case B, the parallel technique is used for bounds tighten-
ing and again the serial global branch-and-reduce method
is used. In both cases, as expected, equally tight variables
bounds are obtained. The solution time for multiple passes
of contraction levels using different number of processors
are shown in Figure 4. As expected, the solution times de-
creased significantly as the number of processors increase.
The average solution time in this case remained around 4−6
seconds when more than 2 processors are used, compared to



4− 14 seconds when used serial contraction . It is observed
that for a problem of this size, the solution time remained
almost constant after using more than 12 processors. This
is due to the synchronization and communication overhead
between the large number of processors as discussed earlier.
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Figure 4. Solution times for multiple passes of parallel
optimization based bound tightening used with a serial
branch-and-reduce algorithm for a problem involving
65 variables.

A parallel global branch-and-reduce algorithm was devel-
oped in order to decrease the solution time even more
significantly. The solution times using a different number
of processors without using any optimization based bound
tightening methods were found as: 6 seconds for one pro-
cessor, 4.2 seconds for two processors, 2.4 seconds for four
processors, and 2.1 seconds for six or more processors.The
solution time decreased for a increase in the number of
processors but remained nearly constant after a particular
point because of communication overhead.
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Figure 5. Solution times for multiple, parallel passes of op-
timization based bound tightening used with parallel
branch and reduce algorithm

In case C, the proposed parallel contraction technique is
used along with the parallel global branch-and-reduce al-
gorithm. The solution times using multiple processors, both
for performing multiple passes of variable contraction and
for parallel branch-and-reduce algorithm, are shown in Fig-
ure 5. A significant decrease in solution times is observed
as compared to the case of using serial branch-and-reduce
algorithm. The average solve time remained around 2 − 3
seconds for this case. Again, to further decrease solution

times, only those variables which contribute the most to
the gap between the original nonconvex problem and the
relaxed problem can be selected for variable bound con-
traction.

CONCLUSIONS

A new parallel optimization based bound tightening algo-
rithm for solving a general class of nonconvex nonlinear
problems has been proposed. The proposed parallel algo-
rithm is implemented in several ways using serial and par-
allel branch-and-reduce algorithms. Computational results
demonstrate that the solve time for determining the global
solution decreased significantly when the parallel contrac-
tion technique is implemented on the convex relaxation of
the original nonconvex NLP prior to performing the global
search for the solution.
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