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Abstract 
 
In a recent paper, Lucia et al. (2003a) introduced a new class of non-quadratic functions for modeling the 
large-scale geometry of general objective functions called generalized exponential funnel functions.  This 
paper provides additional evidence to show that exponential funnels and other non-quadratic functions are 
often better models for objective function surfaces and can result in significant improvements in numerical 
performance in both local and global optimization.  Two simple chemical engineering examples are 
presented to support these claims. 
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Introduction   
  

In optimization, we have long subscribed to the 
notion that one size fits all.  By this we mean that most, 
not all, well-established numerical methods in 
widespread use in optimization are based on quadratic 
Taylor series expansions of the objective function and/or 
constraints.  This has given rise to a number of 
algorithms that all fit under the umbrella of Newton-
based methods (e.g., Newton�s method, quasi-Newton 
methods, successive quadratic programming, and so on).  
Although there are a small number of methods that are 
based on non-quadratic approximations like the 
Jacobson-Oksman algorithm (1972) for homogeneous 
functions, the conic approximation and collinear scaling 
methods of Davidon (1980) and the rational function 
approach of Banerjee et al. (1985), these methods are 
rarely used or cited.  It seems that we have long accepted 
the idea that quadratic approximation is best, despite the 
fact that it is easily illustrated that this is not true.  For 
example, the Lennard-Jones 6-12 potential is clearly 
non-quadratic and Newton�s method often performs 
poorly over a large portion of the feasible region on this 
simple function � unless some type of �fix� is used to 
correct or override the Newton step.  There are other 
physical examples like models of phase transitions and 
phase equilibrium problems modeled by equations of 
state that contain asymptotes, poles, cusps and corners 
within the feasible region that are also non-quadratic and 
exhibit what we call retrograde curvature in the 
neighborhood of a non-differentiable extremum. This 
retrograde curvature coupled with discontinuity or non-
differentiability is always non-quadratic and can lead to 
convergence difficulties for Newton-like methods. 

The main objective of this paper is to study the use 
of non-quadratic approximations of objective function 
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surfaces in local/and global optimization.  Two different 
non-quadratic functions for local or global optimization 
are presented to show that non-quadratic models can 
provide theoretical and computational advantages when 
used in the correct context. 
 
Non-Quadratic Function Approximation 
 

The reasons for the widespread use of quadratic 
approximations in optimization are that they provide a 
simple and unambiguous way of calculating iterative 
estimates of an optimal solution and result in fast 
convergence. Any positive definite quadratic function 
has a unique minimum that can be calculated by solving 
a linear system.  In an iterative context, quadratic 
function approximations usually give superlinear or 
quadratic convergence.  

In this section, we show that non-quadratic functions 
like the generalized exponential funnel functions of 
Lucia et al. (2003a) and the generalized cusp functions 
introduced in this paper share these basic mathematical 
properties and, at the same time, offer additional 
theoretical and computational advantages.  That is, 
funnels and cusps also have unique minima (or maxima) 
that can be easily calculated by solving a linear system 
of equations and used as iterative estimates of the 
solution.  However, they are non-convex functions that 
often provide a better model of the objective function 
than a quadratic model over a larger portion of the 
feasible region and frequently require fewer function 
and gradient evaluations than Newton-based methods to 
find solutions.  When used correctly, funnels and cusps 
are also unaffected by singularities.  On balance, 
however, funnel functions require additional storage (at 
least two function, gradient and Hessian values) and 
additional work per iteration (the solution of a cubic 



 

 
 

polynomial) to build an approximation of the objective 
function. 
 
Generalized Exponential Funnel Functions 
 
 Lucia et al. (2003a) introduced generalized 
exponential funnel functions to approximate the large-
scale geometry of �rough� or �rugged� objective function 
surfaces in global optimization � like the free energy 
surface in protein folding problems.  The basic idea here 
is to build an approximation of the form 
 
F(z) = F0 � Γe -q(z)           (1) 
 
where q(z) = ½zTAz + bTz + c, and where Γ > 0, F0 and 
c are scalar parameters, b is an n-dimensional vector and 
A is an n x n symmetric matrix.  From the gradient of 
the funnel function in Eq. (1), it is easy to show that the 
unique minimum of the funnel is y = A-1b.  To find A 
and b, a scaling parameter, γ  = max (γk, γk+1) > 0 must be 
determined by using the Routh criterion (Routh, 1905) 
and solving a cubic equation that arises from matching 
function, gradient and Hessian matrix information of 
any arbitrary twice continuously differentiable objective 
function, say f(z), g(z) and h(z), with function, gradient 
and Hessian matrix values of the funnel function, F(z), 
G(z) and H(z), at two distinct points.  This results in   
 
A = [γh + ggT]/γ2           (2) 
 
and  
 
b = g/γ −  Az            (3) 
 
From γ, A and b, values of Γ > 0, F0 and c can be 
computed directly.  Moreover, minimum eigenvalue 
estimation methods can be used to ensure that A is 
positive definite.  This, in turn, guarantees that the 
funnel has the right shape and its minimum is unique. 
See Lucia et al. (2003a) for details.   

In our opinion, generalized funnel functions offer the 
following advantages over quadratic approximations (or 
Newton methods). They are non-convex and provide 
better approximations to arbitrary objective functions 
over a wider range of the variables.  They have unique 
minima that can be calculated by solving a linear system 
of equations � just as in Newton�s method.  They are 
virtually unaffected by singular points because of the 
freedom built into these funnel approximations, largely 
through the matrix A.  They are self-correcting in the 
face of convexity changes because they retain function, 
gradient and Hessian matrix values at two or more 
points.  Finally, they have quadratic convergence.  Thus 
for roughly the same amount of work per iteration (i.e., 
the solution of a linear system) and the retention of a 
small amount of extra information, generalized 
exponential funnels provide a self-correcting extension 
of Newton�s method that, to date, has performed well in 
practice. 

 

Generalized Cusp Functions 
 
 Many problems in science and engineering � 
problems in cosmology, physiology, oceanography, 
fluid dynamics and others � contain isolated points or 
manifolds within the feasible region where the 
governing model is discontinuous and/or non-
differentiable; elsewhere the model is smooth.  For 
optimization problems with discontinuous and/or non-
differentiable points we suggest the use of generalized 
cusp functions of the form 
 
C(z) = C0 + [(z � zc)TA(z � zc)]1/m      (4) 
 
where C0 is a constant, zc is the location of the cusp, A is 
a symmetric, positive definite matrix of order n and m > 
2 is an integer.  Note that C(z) is a bounded function that 
is only non-differentiable at its minimum - the cusp. 
 For n = 1, it follows that 
 
C�(z) = [2A1/m (z - zc) (2 - m)/m ]/m       (5) 
 
for z unequal to zc and   
 
C(z)�� = 2(2-m)A1/m (z - zc) (2 - 2m)/m ]/m2  
 

= [(2-m)/m]C�(z)/(z � zc)       (6) 
 
Clearly Eq. (6) implies 
 
(z � zc) = [(2-m)/m] C�(z)/C��(z)      (7) 
 
or that when the objective function is truly given by Eq. 
(4) the cusp can be computed in a single iteration by 
simply scaling the Newton step by (2 � m)/m.  Nothing 
could be simpler!  Note that C�(z) and C��(z) approach 
infinity as z approaches zc, and that this simple analysis 
also shows full Newton steps will not efficiently locate a 
cusp because C(z) is strongly non-quadratic in the 
neighborhood of a cusp.  Full Newton steps are too large 
and will either zigzag their way down both sides of the 
cusp or move outside of the feasible region.  Thus we 
select m as the largest whole number in the integer 
sequence {3, 4, � } that minimizes C(z) and also 
maintains feasibility in the neighborhood of the cusp.  
 For n > 1, the mathematics is not �clean�.  However, 
one straightforward way to extend this simple analysis 
to multivariable cusps, corners, asymptotes and so on is 
by direct analogy.  That is, iterative estimates of the 
cusp should be calculated using 
 
(z � zc) = [(2-m)/m] Hc

-1(z)Gc(z)       (8) 
  
where Gc(z) and Hc(z) are the gradient and Hessian 
matrix of the multivariable cusp function defined in Eq. 
(4).  Again, when C(z) is truly a multivariable cusp 
function the minimum or cusp point is located in a 
single iteration.  For arbitrary objective functions we 
replace Gc(z) and Hc(z) of the cusp function with g(z) 
and h(z) and iterate using Eq. (8) to find the cusp point.  
 



 

 
 

When To Use Non-Quadratic Approximations 
 
 We have always made the choice to use generalized 
exponential funnels a priori (e.g., in an outer loop in the 
multi-scale global optimization of objective functions 
with rugged terrains).  See, again, Lucia et al. (2003a).  
However, generalized cusps can be invoked on the fly 
by monitoring both the Newton step and curvature along 
any terrain path (Lucia and Feng, 2002, 2003) to locate 
asymptotes, poles, cusps or corners. 
 
Can We Really Do Better Than Newton’s Method? 
 
 Yes! We present two small chemical engineering 
examples to show that methods based on non-quadratic 
objective function approximations can provide better 
numerical performance than Newton�s method.  These 
examples were specifically chosen because they do not 
have the same form as the non-quadratic approximation.  
Thus they challenge the robustness of the theoretical and 
computational framework.  
 
Example 1: The Lennard-Jones Potential 
 
 The Lennard-Jones 6-12 potential is commonly used 
to model non-bonded or van der Waal�s forces in 
molecular simulation and is given by 
 
ELJ(r) = 4ε[(σ/r)12 - (σ/r)6]        (9) 
 
where ε is an energy parameter, σ is a distance 
parameter, r is an unknown separation between a pair of 
particles and the feasible region is r ε (σ, 4].  Although 
the minimum of ELJ = -ε at r = 21/6σ can be computed 
analytically, the computational challenge presented by 
this problem is the strongly non-quadratic nature of the 
Lennard-Jones function.  There is an inflection point of 
ELJ at r = 1.244455059 σ and a singular local maximum 
at r = 4 that can attract Newton iterates. When direct 
prediction Newton�s method is started with any r > 
1.244455059 σ, it fails to find the minimum of ELJ 
because of this strong non-convexity.  Although the 
minimum can be easily located by reversing the Newton 
direction so that it�s a descent direction on ELJ, this 
strategy does not always work.  Besides, there is still 
uncertainty about the global nature of the solution. 

If, instead, we start at say r = 4.216867 σ = 7 and use 
the terrain method of Lucia et al. (2003b), then 109 
function and gradient calls are needed - 18 for the local 
maximum, 53 for the inflection point, 21 for the global 
minimum, and 17 to cover the rest of the feasible region.  
The actual bounds used in these calculations were given 
by r ε (σ, 50] and convergence was assumed when ||g|| < 
10-8, where g denotes the gradient of ELJ. 

Finally, if we again start at r = 4.216867 σ = 7, take 
one Newton step, and use values of f, g and h at both the 
starting point and first iterate to start the funneling 
algorithm of Lucia et al. (2003a), the global minimum is 
computed in 10 function and gradient evaluations.  

What�s important about this is that although the first 
Newton step moves away from the global minimum, the 
funneling algorithm automatically corrects this and 
drives all subsequent iterates to the global minimum.  
Table 1 gives the funnel iterates for this example.   
 

Table 1. Funnel Iterates for Lennard-Jones Potential 
 
 Iteration  γ   r (10-10 m)  ELJ(10-21 J) 
           1  0.00019  6.89477  -0.00265 
  2  0.00018  2.95359  -0.41513 
  3  0.29224  2.65508  -0.76379 
  4  0.55501  2.36894  -1.41951 
  5  1.14792  2.06160  -2.69636 
  6  2.69490  1.79376  -3.17669  
  7  3.17471  1.83800  -3.37518 
  8  3.37328  1.85979  -3.39956 
  9  3.39771  1.86322  -3.40000 
  10  3.39815  1.86329  -3.40000 

 
Figure 1 shows a few of the iterative funnel 
approximations of the Lennard-Jones potential. 

Figure 1.  Funnel Approximations of LJ Potential 
 
Example 2: Disk to Vesicle Transitions 
 
 One way to model phase transitions in soft colloids 
is to use the dimensionless energy proposed by 
Lipowsky (1992) given by 
 
E(x) = (x � ba)2 + b(1-(x/2)2)1/2         (10) 
 
where a and b depend on the spontaneous curvature and 
bending modulus of the colloidal material, x is the 
continuous curvature and the feasible region is x ε [-2, 
2].  Note that g = E�(x) goes to minus infinity at the 
boundaries because it contains the term -(1-(x/2)2)-1/2. 

Lucia and Feng (2002) solved this problem for a = 
0.1 and b = 3 using their terrain method and required 
275 function and gradient calls to find the five interior 
stationary points and two poles of E�(x).  They also 
remarked that roughly 200 of those function and 
gradient calls were due to uphill exploration on gTg. 



 

 
 

Using a similar terrain approach we re-solved this 
problem for two sets of parameters a and b.  However, 
we also incorporated the cusp model given in Eq. (4) 
within our terrain method with a test to invoke it on the 
fly.  This test monitors retrograde curvature and the ratio 
R = || g || / || ∆N ||, where ∆N = (z � zk) is the full Newton 
step.  If R > 106 and there is retrograde curvature at both 
z and zk, we scale the Newton step by α = (2-m)/m.  
Otherwise, the step-size is determined by the error in the 
Taylor series expansion from zk to z. 
 We studied the performance of our terrain method 
with and without the on-the-fly cusp model.  For a = 0.1 
and b = 3 and the same starting point used by Lucia and 
Feng, x0 = 0.9, we observed the following when no cusp 
model was used.  For a fixed conservative uphill step-
size of α = 0.1, 265 function and gradient evaluations 
were required to find all of the points in Table 2 and 
correctly identify the global minimum at x = 2.  Many of 
these uphill iterations (158) were used in the 
neighborhood of the boundaries since it is here that E(x) 
is far from quadratic.  If a fixed aggressive step-size of α 
= 1 is used the terrain method fails to find either of the 
cusps at x = +/-2 because uphill Newton steps cross the 
boundaries of the feasible region without ever detecting  
 
Table 2. Stationary Points & Cusps of Vesicle Example 
 
  Point    x       E(x) 
   local min   0.489195   2.94467 
   singularity     -1.38561   5.00466 
   singularity  1.38561   3.34192 
   saddle      -1.89233   5.77736 
   saddle   1.78531   3.55837 
   cusp       -2.00000   5.29006 
   global min  2.00000   2.89000 
 
anything.  If, instead, an on-the-fly cusp model is used 
within our terrain method, all points in Table 2 are found 
in 114 function and gradient evaluations with m = 4.  
Moreover, the marked improvement in numerical 
performance is directly due to the non-quadratic cusp 
model.  Whereas 158 function and gradient calls were 
needed when a quadratic model was used in the 
neighborhood of the cusps at x = +/- 2, when the cusp 
model is used this requirement is reduced to 35.  Figure 
2 depicts iterative behavior near the cusp. For a = 0.1 
and b = 2, the global minimum is not a constrained 
minimum but an unconstrained minimum at x = 
0.267475.  Again, using the same starting point, on-the-
fly cusp approximations within our terrain method 
provided complete reliability and needed 128 function 
and gradient calls to find everything.  Conservative path 
following without the cusp approximations needed 287 
function and gradient calls while aggressive path 
following failed to locate either cusp. 
 
Conclusions 
 
Two non-quadratic models for approximating general 
objective functions, exponential funnels and generalized 

 
Figure 2. Iterative Behavior for m = 3 Near a Cusp 

 
cusps, were presented.  Both models are non-convex 
functions with unique minima and cusp functions, in 
particular, are capable of handling non-differentiable 
points within the feasible region.  Numerical results for 
two simple chemical engineering examples were 
presented that show that non-quadratic approximations 
of general objective functions can provide reliable and 
efficient computations in local and/or global 
optimization.  Copies of all numerical results in this 
paper are available from the authors. 
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