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Abstract 

We propose a new framework to address feasibility analysis and optimal design problems under 
uncertainty. This approach is based on nonlinear chance constrained programming. The feasibility 
analysis problem is defined as the maximization of the achievable confidence level of satisfying all 
constraints for a given design. The solution can provide clear information about the dependence of the 
reliability of a nonlinear convex system on the values of the design variables. This offers a priori the 
feasible region for the design optimization problem. A feature of this approach is that for a design with a 
100% confidence level the solution does not depend on the distribution of the uncertain variables. 
Moreover, the critical constraint which cuts off the largest part of the design space can be identified so 
that, if necessary, a decision can be made to relax this constraint to achieve a meaningful design. The 
chance constrained program will be relaxed to a single level nonlinear optimization problem (NLP). The 
scope of this approach is demonstrated with a nonlinear design problem. 
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Introduction

Many studies on feasibility analysis and optimal 
design under uncertainty have recently been conducted. 
These investigations are motivated by the fact that almost 
all processes are subject to uncertainties. The a priori 
information about the impact of these uncertainties on 
process operations is desired so that a feasible as well as 
optimal design can be achieved. This remains as a 
challenging task for process systems engineering. 

Following the definition of feasibility test and 
flexibility index, optimal design problems can be 
formulated with fixed flexibility (Halemane and 
Grossmann, 1983) or variable flexibility (Grossmann and 
Morari, 1983). A nested two-stage approach was proposed 
to solve the optimization problem (Pistikopoulos and 
Ierapetritou, 1995; Rooney and Biegler, 2001). The first 
stage (design stage) requires the solution of a multi-period 
problem constructed from discrete points in the intervals 
of the uncertain variables. The second stage (feasibility 
stage) tests the feasibility of the fixed design given by the 

first stage, over all ranges of the uncertain variables. The 
iteration between the first and the second stage demands 
expensive computational efforts.  

In this work, we propose a novel framework for 
feasibility analysis and design optimization under 
uncertainty. This framework is based on the method of 
chance constrained programming for convex systems 
(Prékopa, 1995). The feasibility analysis problem is 
defined as maximization of the achievable confidence 
level of satisfying all constraints for a given design. The 
feature of this approach is that the chance constrained 
program can be relaxed to a single level (instead of 
multilevel) convex nonlinear optimization problem. If the 
resulting confidence level is 100%, there will be at least 
one set of operation variables that can be chosen during 
plant operation, such that, for every possible realization of 
the uncertain variables, all of the constraints will be 
satisfied. Otherwise, if the resulting confidence level is 
less than 100%, the given design will be infeasible.  



 
This approach can employs the available probability 

density function (PDF) of the uncertain variables. 
Solutions in the whole design space provide clear 
information about the dependence of the reliability of a 
nonlinear convex system on the values of the design 
variables. On the other hand, if specific intervals of the 
uncertain variables are only available, one most prominent 
distribution (e.g. normal distribution) over the intervals 
will be assumed for the probability computation. Since the 
feasibility is determined only by the criterion of a 100% 
confidence level which is independent of the PDF of the 
uncertain variables, this assumption has no impact on the 
result of the feasibility analysis. In this case, the results 
over the whole design space offer a priori the feasible 
region for the design optimization problem. Moreover, the 
results make it possible to identify the critical constraint 
which will cut off the largest part of the design space. This 
is important information for the designer to relax the 
critical constraint, if allowable, to gain a meaningful 
design. An example is used to demonstrate the scope of 
the proposed approach. 

Feasibility Analysis with Chance Constraints 

Problem formulation 

Consider feasibility analysis for a process with a 
given design that can be generally described as 

  (1) 0dθuxh =)ˆ,,,(

  (2) 0dθuxg ≤)ˆ,,,(

where  are the state variables,  
are the control variables,  are the uncertain 
variables, and  are design variables. d  is a 
given point in the design space.  are the model 
equations being able to describe the process over the 
whole spaces of all of the variables.  are the 
inequality constraints which must be satisfied during the 
process operation. Note that the dimension of x  is always 
the same as the dimension of , and thus the state 
variables  can be implicitly eliminated by solving the 
equation system h , through a simulation step. It means 
that we have in effect the following inequality constraints 
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to be evaluated for the feasibility analysis. In this study, 
convex systems are considered, i.e. the components in 

 are convex functions. The feasibility analysis of 

the design d  is to check if there exists a set of controls 
 with which all inequality constraints in (3) can be 

satisfied, under any possible realization of the uncertain 
variables . Unlike the definition of the feasibility test 
and flexibility index, we define the following stochastic 
optimization problem under single chance constraints 
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where α  is the confidence level (i.e. reliability of being 
feasible) to hold each constrain in (3), which is a variable 
to be maximized. ),,1( LlPl L=  is the probability 
measure for constraint l. The aim of this problem is, for a 
given design, to search for the set of controls  with 
which the maximum confidence level, , of satisfying 
all inequality constraints under any possible realization of 
the uncertain variables, is achieved. It should be noted that 

 corresponds to the least value of the probabilities of 
holding the individual constraints. At the solution point, 

, there may be one or more constraints which are 
active, i.e. 
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And the rest of the constraints will have their probability 
levels larger than . If , it means all constraints 
will be satisfied with a 100% confidence level and thus the 
given design d  is feasible. If , then  should not 
be considered as a candidate for the design, since 
otherwise there is some probability of violating the 
constraints.  
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For different processes, the a priori knowledge about 
the uncertain variables  may be very different. In most 
previous studies, it has been assumed that the uncertain 
variables have probable values over certain intervals, i.e. 

, where  and  are the known lower and 
upper bound, respectively. Even in the case of having the 
knowledge of uncertain variables with normal 
distributions (with expected values  and variances σ ), 
they have also been treated as intervals with e.g. 

 (Pistikopoulos and Ierapetritou, 
1995; Bansal et al., 2002). In this way, the available 
distribution information is not fully utilized.  
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Using the method of chance constrained 
programming, the probability density function )(θρ , if 
available, can be employed for the feasibility analysis. The 
solution of problem (4), , represents the reliability of 
satisfying the constraints by the given design . Since 

 is a function of d , all solutions in the design space 

maxα
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maxα ˆ
D∈d  will provide clear information about the 

dependence of the reliability of the system on the values of 
the design variables. 

On the other hand, in the case that uncertain variables 
are only known in some certain intervals, to use the 
chance constrained programming framework, we can 
assume that they have one most prominent distribution 
(e.g. normal or uniform) over the known intervals 

. Since feasibility can only be determined by 
the criterion that the confidence level is 100%, which is 
independent of the PDF of the uncertain variables, this 
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assumption has no impact on the result of the feasibility 
analysis. In this case, the result over the whole design 
space provides the feasible region for the design 
optimization problem. 

The Solution Approach 

To solve the chance constrained problem (4), it has to 
be transformed into an equivalent deterministic NLP 
problem. The essential challenge here lies in the 
computation of the probabilities of holding the constraints 
as well as the gradients of the probability functions. A 
solution approach to nonlinear problems with one single 
probabilistic constraint is proposed by Wendt et al. (2002). 
This approach is suitable for solving the feasibility 
analysis problems. The basic idea of this method is to map 
the output distribution to that of the uncertain input 
variables.  

One of the uncertain variables sθ  that has a monotone 
relation with the constraint function  is selected. This 
can be done by analyzing the physical relations between 

 and θ . Due to this monotony, the required boundary 
of  (i.e. zero) in the output region corresponds to a 
boundary value  for 
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boundary value can be computed by solving the model 
equation system h based on the given design d  and given 
decision variables . Then the computation of a single 
probability of the output constraint can be transformed to a 
multivariate integration in the limited space of the 
uncertain inputs 
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where the )(θρ  is the unified distribution function of . 
Based on this probability computation, we propose a 
sequential NLP approach to solve the problem (4) for the 
given design . An NLP solver is then used to optimize 
the variables u and 

θ

d̂
α . The principle of the probability 

computation can be described with Fig. 1. Suppose we 
have the monotony that  is proportional to lg sθ . Because 
of the uncertain variables θ , the values of different sets of 
controls ( ) may result in three different 
distributions of the constrained outputs (e.g. 

) with , , and 

. Due to the monotony, the limiting values 

( ) of the uncertain variable 
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determined based on the model equations and thus the 
corresponding probabilities of holding the constraint can 
be computed. Note that this solution strategy is 
independent of the distribution of the uncertain input 
variables, i.e. it can be applied to any distribution, if the 
multivariate integration in (6) can be carried out.  

As mentioned before, to evaluate the feasibility of a 
given design, we only need to assess the value of ; if 
it is 1.0, then the design is feasible, otherwise it is 
infeasible. This decision is independent of the distribution 
of the uncertain variables. Thus we can assume they have 
normal distributions to obtain the decision. Collocation on 
finite elements for correlated uncertain variables with 
normal distributions is used for the multivariate 
integration. That is, the range of each uncertain variable is 
divided into certain intervals and in each interval the PDF 
is approximated by orthogonal polynomials based on 
internal collocation points. The gradients required by the 
NLP solver can be computed simultaneously during the 
integration as well. For solving problem (4), all single 
chance constraints and their gradients to the controls have 
to be computed.  

maxα
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Figure 1.   Probability computation of a single 
constraint. 

 
Computation results 

To demonstrate the proposed approach, the example 
given by Bansal et al. (2002) is considered. After 
elimination of the state variables, the system is described 
with the following set of inequalities: 
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The uncertain variables both have nominal values of 3 

and expected deviations 1± , i.e. 42 ≤≤ iθ , 2,1=i . For a 

given design, , we determine the feasibility of the 
system in three ways. First, the feasibility of a design can 
be directly determined by analyzing the inequalities (7)-
(9), i.e. the given design will be feasible, if a value of u 
can be found to satisfy all three inequalities. This algebraic 
analysis leads to the result that the design will be either 
feasible or infeasible. Fig. 2 shows the feasible region of 
the system.  
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Second, we assume both uncertain variables have 
uniform distributions. The corresponding problem in the 
form of (4) is formulated and solved with the proposed 
approach. Fig. 3 shows the feasible regions with different 
probability levels of holding the constraints. It can be seen 
that the feasible region will shrink, if the required 



 
confidence level is increased. With the 100% reliability, 
the feasible region is identical with that shown in Fig. 2.  

Third, both uncertain variables are assumed to be 
normally distributed. The corresponding chance 
constrained problem is solved and the result is shown in 
Fig. 4. In comparison to Fig. 3, the feasible region with 
same confidence levels will be different due to the 
different distributions of the uncertain variables. But at the 
100% confidence level, both kinds of distributions lead to 
the same feasible region.  

Fig. 5 illustrates the achievable maximum probability 
in relation to the value of design variables, with the 
uncertain variables uniformly distributed. It can clearly 
indicate the dependence of the reliability of a design.  

 

 
 

Figure 2.   Feasible region of the problem through 
algebraic analysis. 

 

 

Figure 3.   Feasible region with uniform 
distribution of uncertain variables. 

            

Figure 4.   Feasible region with normal 
distribution of uncertain variables. 

 

 
 

Figure 5.   Probability distribution (confidence level) 
corresponding to different designs. 

Conclusions 

A new framework was proposed to analyze the 
feasibility of design problems with uncertainty. This is 
made by chance constrained programming which leads to 
a single-stage computational approach. A feasible design 
will be ensured by a 100% probability of holding the 
process constraints. The feasible region can be identified 
so that the designer can chose a decision according to 
specific design criteria. In particular, an optimal design 
can be gained based on the results of feasibility analysis, 
i.e. a chance constrained optimization can be carried out if 
a feasible region is available. Correlations between 
uncertain variables have not been considered in the current 
work. Moreover, convexity analysis of this framework 
presents a challenge future work. 
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