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Abstract 

Keywords 

One of the important considerations in plant design is to be able to accommodate changing 
product demands of future markets. All of the existing approaches for design optimization 
aim at creating customized designs in which production capacity have been specified to 
meet certain market demand. This paper presents a module-based approach to integrate 
probabilistic demand data-analysis and robust design optimization stages, that have been 
traditionally performed separately, to generate a set of designs that span the demand space 
in a cost-optimal fashion. A case study of design of a reactor-separator system is presented 
to illustrate the applicability of the proposed approach. 
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I n t r o d u c t i o n  

Today's marketplace reality is characterized by rapid, 
uncertain, and continuous changes. Since design 
specifications of chemical plants, such as product de- 
mands, ambient conditions or model parameters nor- 
really vary during process operation, an optimal de- 
sign must not only be economically optimal but also 
capable to operate in steady-state for a range of vari- 
able conditions that may be encountered. Competing 
markets enforces a high degree of market adaptation 
and orientation necessary. 

With respect to the way the uncertainty is han- 
dled, three different approaches are known, such as, 
(a) the scenario-based approach (Grossmann and Sar- 
gent, 1978); (b) the stochastic approach (Pistikopou- 
los and Ierapetritou, 1995) and (c) the parametric 
approach (Pertsinidis et al., 1998). The first two ap- 
proaches are based on characterization of the uncer- 
tain parameter space by considering either discrete 
scenarios or stochastic distributions, assuming that 
some information regarding the uncertainty is pro- 
vided either in the form of most expected nominal 
point or specific range of values or in the form of a 
probability distribution function. In the parametric 
framework, no assumptions are made on the uncer- 
tainty model and the design optimization problem 
is solved parametrically over the uncertain demand 
space resulting in a map over the uncertainty-design 
space. 

To handle the trade-off associated with the ex- 
pected cost and its variability, Mulvey et al., (1995) 

proposed the concept of robustness. A decision is 
termed robust if the actual cost of the realized sce- 
nario remains "close" to the optimal expected cost of 
all the scenarios. Since then, a number of papers have 
been published involving robustness (among others, 
Suh and Lee, 2001), all varying in the definition of the 
robustness function and the process being optimized. 

The motivation for this paper comes from realiz- 
ing that significant economic savings can be achieved 
if standardized designs can be developed by taking 
into account the customer demand space. The rel- 
evance of the work origins from the fact that devel- 
oping modular designs would be substantial cheaper 
for a manufacturer as developing a portfolio of de- 
signs would save considerable time and money and 
for a customer, various design alternatives would be 
available, based on cost and flexibility. Thus, the ob- 
jectives of this paper is to introduce an unified data 
analysis-design optimization framework for determin- 
ing robust optimal designs, weighted over demand 
probabilities. The main idea is to cluster the demand 
data, solve a stochastic robust design optimization 
problem over the clusters and iteratively improve the 
designs to generate the minimum set of robust de- 
signs that will span the demand space. The paper 
is organized as follows. Following this introduction, 
in section 2, the detailed proposed framework is pre- 
sented. In section 3 a case-study of a reactor design is 
presented to illustrated the relevance of the approach. 
Finally, section 4 summarizes the work and presents 
future work directions. 
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2 Module -Based  Design Opti- 
mization Framework 

The main target of the proposed algorithm is to ex- 
pand the boundary of the design optimization prob- 
lem by integrating the data-analysis stage, thus al- 
lowing more flexibility at the decision making process. 
The basic aim is, given a demand-map where each de- 
mand point has randomness, to determine an optimal 
portfolio of designs that  jointly cover the entire de- 
mand space based on customer requirements. The 
proposed algorithm, consists of the following stages: 

S t ep  1: The demand data are initially clus- 
tered in a minimal number of clus- 
ters using fuzzy-clustering. 

S t ep  2: A stochastic robust design optimiza- 
tion problem is solved over each 
cluster to generate a design for the 
cluster-points. 

S t ep  3: The "value" of a design is evaluated 
based on expected cost and feasibil- 
ity criteria. 

S t ep  4: The number of clusters are then in- 
creased by one and steps 1-3 are re- 
peated for the new clusters. 

S t ep  5: The new set of designs obtained at 
step 4 is compared with the previous 
set of designs on the basis of cost and 
flexibility criteria. 

S t ep  6: If any "better" designs are obtained 
at step 4 then perform steps 4-5 
again and compare the designs with 
the previous set of designs, until no 
new (smaller/cheaper) designs are 
obtained. 

The following classifications should be made about 
the steps of the algorithm: 

S t ep  1: It is not possible to know a-priori the 
minimal number of designs that  can cover the en- 
tire demand space, thus an iterative procedure has 
to be utilized that  starts from a small number of de- 
signs. Due to the probabilistic nature of the demand, 
a fuzzy clustering approach provides a systematic 
methodology to incorporate variance within a clus- 
tering framework. The clustering algorithm FANNY 
(Kaufman and Rousseeuw, 1990) is utilized to cluster 
the demand. 

S t ep  2: The stochastic robust design optimiza- 
tion problem can be mathematically modeled in a 

discretized formulation as follows: 

s,k' C6 

min 
s,kC6 s,kC6 

s,kC6 OCO 

h(d, x~,k, z~,k, G,k ) = 0 

g(d, x~,k, z~,k, O~,k) <_ 0 

pr°d~m + zkom - > dern~m VO c O, k c N 

prod~ 'k + Lz~ 'k > dern~m + ai~ -1 (a) VO e O, s, k e 5 

where G,k = Cs,k (d, x, z, 0) represents the total op- 
erating and capital cost for scenario s for demand 
point k; d is the set of design variables; x, z are state 
and control variables and 0 is the uncertain variables 
following a normal distribution J(0); h and g are the 

equality and inequality constraints respectively; z~ 'k 
represents the unmet demand for each point sk and z~ 
represents the unmet demand of the expected-mean 
Ok m for each point k; dern~ and prod~ are the required 
demand and production amount for demand 0 in sce- 
nario s; p~ - J(0~) is the probability of the demand 
and the above deterministic formulation is generated 
after the discretization of the uncertain-variables k 
into s samples, s k. 

The first term in the objective function is the ex- 
pected cost of the design over all the demands in the 
cluster. The second term is the variance of the ex- 
pected cost, weighted by parameter ~ which penalizes 
a high variance in the operating cost of the optimal 
design due to a possible large demand span. The 
presence of outliers, may still drive the optimal solu- 
tion toward an over-design, hence the third term is 
introduced to allow for a degree of infeasibility in the 
demand satisfaction, weighted by parameter  aJ. 

The third constraint is the model robustness con- 
straint that  allows some infeasibility in the demand 
satisfaction using the means as the representative for 
each demand point distribution. The last constraint 
is the deterministic formulation of the chance con- 
straint P((prodo >_ dernO) >_ a)) where a is the prob- 
ability of satisfaction and ~-1  is the inverse cumula- 
tive distribution function (Prekopa, 1995). Further- 

more, an additional term, Lz~ 'k is added where L is 
a large positive constant to negate the effect of any 
demand-point that  has been rejected by the robust- 
ness constraint as an outlier. 

S t e p s  3: The "value" of a design is quantified 
based on two criteria. The first criterion is the ex- 
pected total cost. If a demand point is feasible for 
two alternative designs, then the cheaper design is 
used to satisfy the demand. The second criteria is 
the number of feasible demand points for a design. 
For convex systems, to evaluate the operability lira- 
its of a design the simplicial-approximation approach 
proposed by Goyal and Ierapetritou, 2002 can be uti- 
lized. 

2 

(1) 



Steps  4-6: In step 4, the number of clusters is 
increased by one and an alternative set of designs are 
obtained for each of the new clusters. The new set 
of designs are then compared with the previous sets 
on the basis of design "value". Since at each itera- 
tion, the demand-space for each design optimization 
is reduced due to increase in number of clusters, a 
better (smaller/cheaper) design is obtained for some 
of the demand-points. This process is repeated until, 
no new designs are obtained at the clustering stage. 

Thus at the end of the algorithm, a set of design 
alternatives are developed that  span the entire de- 
mand space. The various alternatives would result in 
an increased decision making flexibility due to better 
utilization of the available demand data. Specifically, 
great savings can be achieved since modular-based 
designs are obtained to cover the entire range of de- 
mand and better information is provided regarding 
different design alternatives involving design-costs, 
flexibility and robustness. 

It should be noted that  the existence of outlier 
points in the demand-space, may disturb an effec- 
tive clustering and hence affect the outcome of the 
algorithm. However, the outliers can be identified if 
they persistently appear as unmet demands in the 
robust design-optimization problem. A case-study of 
a reactor-separator system is presented in the next 
section to illustrate the applicability of the proposed 
approach. 

3 Case Study" Reactor- 
Separator System 

The case study presented in this section is the design 
of a CSTR in series with an ideal separator. The 
aim is to minimize the cost to convert raw material 
A into two finished products B and E. Details and 
explanations of the model equations and kinetics are 
described in Rooney and Biegler (1999). The design 
variable is the CSTR volume V and the objective 
function consists of minimizing the expected capital 
cost. The demand plot for the products B and E were 
randomly generated assuming a bivariate normal dis- 
tribution with a standard deviation (a~) - 36 and 
a correlation coefficient (Pi) = 0.5 and the expected 
means of the demands are as shown in Figure 1. 

The objective of the problem is to determine the 
optimal set of designs (V, Fao) to cover the demand 
space, where Fao is the input flow-rate of A. The opti- 
mal set is defined as the minimum number of designs 
with minimum total cost that  can be used to cover 
the entire demand space. The problem is modeled fol- 
lowing the stochastic design optimization framework 
(problem 1). The variance of the cost of design is de- 
termined using the variability of the operating cost 
consisting of the cost for recycle. The robustness- 
parameters are fixed to, ~ = 0.1 and c~ = 1000 for 

the case-study solved in this paper and each demand 
distribution is discretized into a set of 10 scenarios. 
The proposed approach is thus applied for the reactor 
system and the results are as summarized below. 
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Figure 1: Demand Space 

3 .1  C o m p u t a t i o n a l  R e s u l t s  

The application of the proposed approach is initial- 
ized by assuming three clusters. Steps 1-2 of the pro- 
posed approach are applied where the stochastic ro- 
bust design optimization problem is solved consider- 
ing the corresponding discretization for each of the 
three clusters. A design with V = 32.4m a, Fao = 
108.8 mol /hr  and an expected cost = $3344.5 is ob- 
tained for the cluster illustrated by "+" in Figure 2; 
a design with V = 65.3, Fao = 259.9 and an expected 
cost of $6785.9 is obtained for the cluster shown by 
/X in Figure 2; whereas a design with V = 119.4, 
Fao = 401.3 and an expected cost of $12343.6 is ob- 
tained for the third cluster shown by "o" in Figure 2. 
Due to the non-convex nature of the constraints and 
the low dimensionality of uncertainty, feasible region 
approximation is performed using grid-search simu- 
lations and the results are as shown in Figure 2. The 
first design is feasible over 8 out of 14 demand points, 
the second over 11 out of 28 points and the third de- 
sign is feasible over 10 out of 18 demand points in the 
cluster. 

Steps 4-5 of the proposed approach are then 
applied by increasing the number of clusters by 
one. This results in one additional robust-designs 
with: (V, Fao,capital cost,feasibility) = (100.7, 420, 
$10487.6, 7 over 12 demands). The remaining three 
clusters yield no new designs. The new design con- 
figurations is "better" than the previous obtained de- 
signs with respect to cost and hence is accepted and 
another iteration is carried out. Thus, at the end of 
the second iteration, a total of four (three from pre- 
vious iteration) robust designs have been determined 
with varied degree of flexibility that  span the demand 
space. 

The number of clusters is then increased to five, 
resulting in the following three new design configura- 



tion: (V,Fao,capital cost, flexibility) = (26, 80, $2620, 
5 over 8 demands); (V,Fao,capital cost, flexibility) = 
(58, 220, $6020,6 over 8 demands) and (V,Fao,capital 
cost, flexibility) = (96, 316.9, $9916.9, 8 over 11 de- 
mands). Thus at the end of the 3 rd iteration a total of 
seven robust designs have been developed that cover 
the demand space. 

The number of clusters is then increased to six, re- 
sulting in one new robust design with (V,Fao,capital 
cost, flexibility) = (136.1, 459.7, $14067.8, 6 over 8 
demands). Thus, another iteration of the procedure 
is carried out by increasing the number of clusters 
to seven but no new design configurations were ob- 
tained at this stage. Hence the iterative procedure is 
terminated at the 5 ~h iteration. 

To summarize the results, at the end of the op- 
timization process, a set of e ight  m o d u l a r  robust 
designs have been developed that  span the demand- 
space. The set of robust designs obtained after the 
first iteration are also summarized in Figure 3, where 
grid-search simulations have also been performed to 
show the feasibility of the designs. For the points that 
are covered by more than one designs there are some 
interesting trade-offs that have to be considered in 
the decision making process since the more expensive 
designs have higher flexibility and thus higher profit 
can be anticipated if higher demand is to be realized 
in the future. 

4 S u m m a r y  and Future Direc-  
t ions 
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Figure 3: Set of robust design for the five clusters 

clustering methodology and stochastic design opti- 
mization iteratively allowing re-partitioning of data 
based on search for an alternative "better" design 
with respect to the current clustering of data. Re- 
search is currently underway regarding a better un- 
derstanding of the tradeoffs between the different 
objectives in the robust optimization framework. 
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