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Abstract 

In this presentation, we will discuss multicriteria optimization (MCO) under uncertainty. We will 
consider a number (p) of conflicting criteria which depend on a vector of design variables (e.g. volume 
of reactor), control variables (e.g. temperature and flowrate) and uncertain parameters (e.g. rate constant 
and heat transfer coefficient).  Our approach exploits the following facts. The design variables are 
constant at the operation stage, while the control variables can be tuned for satisfaction of process 
constraints. In addition, the level of accuracy of the uncertain parameters is often different at the design 
and operation stages. Specifically we will show how to construct a Pareto set (set of inferior points) at 
the design stage of the chemical process, being mindful that at the subsequent operation stage, there are 
enough process data for the sufficiently accurate estimation of all of the uncertain parameters.  We 
proceed as follows. We first transform each criterion to a new form, which depends only on the design 
variables. The formation of new criteria uses a strategy similar to what is generally used for formation 
of the performance objective function in the two-stage optimization problem. The main difference is 
that in the internal optimization problem, a convolution of the multiple criteria (discussed earlier) is 
used instead of  the original criteria. The convolution results from using MCO methods. After that the 
new criteria can be used for construction of a Pareto set. To obtain a point on the Pareto set, we 
formulate a bi-level optimization problem involving calculation of p multidimensional integrals for each 
value of the design variable vector. Since the resulting formulation is nondifferentiable and 
multiextremal, a direct solution is computationally intensive. To avoid this, we transform the bi-level 
optimization problem to one-level optimization problem, which is then solved using the split and bound 
method. The latter obtains the global solution if each original criterion satisfies some convexity 
conditions. At each search point the method requires calculation of only one multidimensional integral.  
In summary we give a two-stage formulation of the MCO problem under uncertainty and suggest 
methods for solving the corresponding bi-level optimization problem. 
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Introduction

Often the performance of chemical processes cannot 
be estimated by only one objective function and it is 
necessary to take into account several conflicting criteria, 
for example (a) process economics and environmental 
requirements, and (b) integration of process design and 
control. Multicriteria optimization (MCO) under 
uncertainty can be formulated as  

0),,(

)),,(),...,,,((min 1,

≤θ

θθ

zdg

zdfzdf pzd    (1) 

where d and z  are vectors of design and control variables, 
respectively, θ  is a vector of uncertain parameters, g(x) is 
of dimension m. The main concept in MCO is the Pareto 
Set (PS) (non-inferior set of points ) (Sophos et al, 1983). 

 
   



  
 
Approach  

In the MCO problem under uncertainty, the 
complexity consists in taking into account the different 
characteristics of the design and control variables. The 
main difference between the design and control variables 
consists in the possibility to change the control variables at 
the operation stage. To formulate the MCO problem under 
uncertainty, we will take into account the ability to tune 
the control variables at the operation stage within the 
context of extensions of the average criterion (AC) 
(Sophos et al, 1983) method and the −ε constraint method 
(Haimes, 1975).  In the extended AC method, we employ 
the following two-level approach. At the first level we 
transform each criterion ),,( θzdfi  to a new criterion, 
which depends only on design variables.  Subsequently, 
using the AC method, we construct the PS.  We formulate 
the problem as 
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Let us construct functions ),( adfi , which employ 

the optimal solution  from (2) as follows  ),,(* adz θ
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Each new criterion ( , )if d a  is a mean value of the 

original criterion, ),,( θzdfi .This mean value is 
determined at the operation stage such that at each time 
instant problem (2) is solved as the internal optimization 
problem. Again we can use the same AC method for the 

construction of a convolution of the functions ( , )if d a . 

Note that ( , )if d a does not depend on the control 
variables z, therefore we can directly use the AC method. 
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Solving problem (5) using ),( adfi for some set of 
parameters a, we can construct a curve that is an analog of 

the conventional PS. The decision maker (DM) selects a 
point[ , ]d a  from the PS. We will refer to this new curve 
as the DM curve. 

Let us analyze the obtained result. For each   the 
control variables are obtained by solving (2) where 

lθ

aa =  and dd = . Thus, the found values of the 
variables z correspond to one of points on the conventional 
Pareto set for the functions ),,( l

i zdf θ . Solving 

problem (5) we obtain ( , )if d a  which correspond to one 
of the points in the conventional PS for the 

functions ( , )if d a . 

Suppose the decision maker selects the point ),( ad  
from the DM curve as the solution of the MCO problem. 
This means that if we solve the internal optimization 
problem (2) at each time instance during the operation 
stage, the mean of ),,( l

i zdf θ will be equal 

to ( , )if d a . It is clear that the solution can be realized, if 
at each time instant the internal optimization problem (2) 
will be solved since the same  *( , , )z d aθ  is used for 

construction of each ( , )if d a . Problem (5) is a bi-level 

optimization problem since for calculation of ( , )if d a  

we must use , which is the solution of (2). It is 
known that it is very computationally intensive, requiring 
the use of global, nondifferentiable optimization methods 
(Clark and Westerberg, 1983). To make matters worse, 
during the calculation of the objective function of (6), we 
must calculate p multidimensional integrals at each value 
of d.  
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 In connection with this we reduce the problem to 
a simpler problem as follows. Substitute in 

( , )f d a expressions for ( , )if d a from (4) to obtain 
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This is equivalent to 
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The term in the square brackets is the optimal value of 
the objective function of the internal optimization problem 
(2). Therefore, we can rewrite (7) as 
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Since for a given θ  the optimal value at z does not 
depend on the values of z for otherθ  , we can rewrite the 
above as 
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Here z(θ) is a multivariable function with respect to the 
uncertain parameters θ. Substitute the expression for 

),( adf in problem (5) to obtain 
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Tzdg ∈∀≤ θθθ   0)),(,(    (9) 
In order to guarantee satisfaction of (9) we must 

augment (8) with the following constraint 
0)(1 ≤dχ      (10) 

where (Halemane and Grossmann,1983) . 

1 z Z
( ) max min max ( , , )

(1,..., ).
i

jT j J
d g d

J m
θ

χ θ
∈∈ ∈

=

=

z
 

Now consider the −ε constraint method. For 
simplicity we will look at the case when p=2. In the 
absence of uncertainty the approach is as follows.  The 
performance criteria are arranged in order of importance, 
with 1( )f x  being the most important. Next the following 
problem has to be solved  
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Assuming (1) (1) (1) (1)
1 1 1[ , ] ( ( )x f f f x=  is the 

global solution of the problem; we next solve the 
following problem 

)(min 2
)2(

2 xff
x

=     (12) 

     ( ) 0,      1,...,jg x j m≤ =

11 )( ε≤xf            (13) 

where 0>iε  is some parameter satisfying the 

condition .Let 1
)1(

1 ε≤f (2) (2)
2[ , ]x f be the solution of the 

problem. We derive an extension of this method to MCO 
under uncertainty. Here we must formulate two-stage 
analogs of problems (11), (12).  

The analog of problem (11) is the conventional one-
criterion optimization problem  
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It is clear that the optimal value of the objective 

function in (14) can be written as 
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 Now consider a two-stage analog of (12), for 

which the internal optimization problem is 
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Let be the solution of (16). To formulate an 

analog of the constraint (13), we note that 
is a mean value of the first criterion 

when 
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solving problem (16). It is reasonable to require that 
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21 θθzdfE 1ε  , where 1ε  
must satisfy the condition  
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 In other words the following inequality must be 

met .Finally, the two-stage 
analog of (12) will be 
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 Substitute into (18) the expressions for mathematical 

expectation 
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Note that it is very difficult to solve (19) since it 
requires solving (16) at each pointθ . To circumvent this, 
change the order of operations in the objective function to 
obtain 
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Problems (19) and (20) are not equivalent since the 
variables )(θz corresponding to different points θ are not 
independent (they are connected by condition (21)). 
However, there exists inequality  
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subvector of x. then 22 ff ≤ . Thus, problem (20) gives 
an upper bound of the objective function in (18). Later on 
we will employ (20) in the MCO problem. 

Solving problem (20) for different values of 1ε  we 
will obtain the curve, which can be used by decision 
maker for selection a final solution of the MCO problem 
under uncertainty. As indicated earlier, we refer to the 
curve as a DM curve.  
Also, the extension of the average criterion method 
permits to obtain some points on a PS.  However, for 
obtaining all points of the PS the region restricted by the 
PS curve must be convex. The ε -constraint method does 
not have these drawbacks. 
The approach can be easily extended for p>2. Also the 
extended AC method and constraint−ε method can be 
used for of constructing a DM curve. Since the latter is 
constructed point wise, we need to construct   points 
for representation of the DM curve. Here q is the number 
of discrete points corresponding to each criterion  
(i=1,…,p). This means that problem (8), (9), (10) or 
problem (20) must be solved  times. Therefore for 
q>3 constructing a DM curve can be computationally 
intensive. To alleviate this problem, one can construct a 
subset of points on the DM curve. The implication is that 
when using the AC method, we need coefficients  
(i=1,…,p) which give relative importance of  the criteria 

 (i=1,…,p). Solving problem (8),(9),(10)  we obtain a 
point on the DM curve., which  is a solution of the MCO 
problem.  
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Example 

Consider the MCO problem for a three-stage flowsheet 
(Ostrovsky et al, 2003).  We will suppose that the by-
products C and D are hazardous to the environment. 
Therefore, it is desirable to decrease the exit flowrate of 
these products. Thus, here we will have two criteria, which 
characterize the performance of the chemical process. One 
criterion will represent the economics of the CP. The 

other criterion is flowrate of the undesired by-
products. Using the average criterion strategy and 

)( 1f
)( 2f

constraint−ε method, we construct the PS for the case 
when uncertain parameters take nominal values. In 
agreement with the theory the points obtained by all 
methods lie on the curve ABC (Figure 1). For the case 
when uncertainty is taken into account, we construct the 
DM curve using the extensions of the AC method and 

constraint−ε method. Both methods gave the same 
curve A*B*C*.  
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Figure 1 Accounting for Uncertainty - Pareto 
sets for nominal values of uncertain parameters 
and DM curve 
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