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Abstract 

Robust decision making under uncertainty is considered to be of fundamental significance in several 
discipline and application areas. In dynamic processes, in particular, there are parameters which are 
usually uncertain, but may have a large impact on the targets like the objective value and the constrained 
outputs. Thus consideration of the stochastic property of the uncertainties in the optimization approach is 
necessary for robust process design and operation. In this work we present a novel chance constrained 
optimization approach to address the problem of optimal process design under uncertainty, in which 
optimal operational considerations and robustness analysis are simultaneously considered. The 
formulation of individual pre-defined probability limits of complying with the restrictions incorporates 
the issue of feasibility and the contemplation of trade-off between profitability and reliability. A two-
stage reactor system is investigated in detail to demonstrate the potential of the new approach. 
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The competitive nature of the market environment imposes 
reliability in the meeting of product demands and quality 
specifications. The chemical industry is, therefore, 
required to make design and operating decisions to satisfy 
several conflicting goals in an optimal and safe manner. 
However, uncertainty and variability are inherent 
characteristics of any process system. These arise due to 
unpredictable and instantaneous variability of different 
process conditions, such as temperature or flow rates, or 
due to uncertain model parameters, such as kinetic 
constants or equilibrium parameters. The conventional way 
to compensate for uncertainties at the design stage is an 
overdesign of process equipment and then retrofits to 
overcome operability bottlenecks. At the operation stage, 
processes are normally run with an operating point defined 
by an overestimation of the uncertainties, consequently, 
greater costs than necessary will be the cause of these 
heuristic rules. During the past decades several approaches 
have been suggested to address the problem of process 

design under uncertainty (Halemane et al., 1983, 
Pistikopoulos et al., 1995). Virtually most of these 
approaches employed the two-stage programming method 
with the recourse formulation to handle inequality 
constraints. In this method, violation of the constraints is 
compensated for by some penalty terms in the objective 
function. This compensation, however, requires a common 
measurement to describe the objective function and 
constraint violations. Alternatively, when this measurement 
is not available, the formulation of chance constraints with 
a user pre-defined probability limit of constraint 
compliance will be the most suitable approach. For the 
numerical optimization under probabilistic constraints, 
several methods have been developed. Alternative to 
efficient sampling techniques (Diwekar et al., 1997), we 
proposed in a previous work a systematic approach to 
solving nonlinear chance constrained optimization 
problems, where the monotony of the constrained output to 
at least one uncertain input is utilized, so that the feasible 



region (output distribution) is mapped to a region of the 
uncertain variables (Arellano-Garcia, et al., 2003). 
However, there are, in fact, some stochastic optimization 
problems where no monotone relation between constrained 
output and any uncertain input variable can be assured. 
Predominantly, such processes which imply complex 
reaction systems where the question of whether there is a 
monotony or not are strongly dependent on the policies of 
the decision variables. To address this problem, a novel 
efficient approach is proposed to chance constrained 
programming for nonlinear dynamic processes with no 
guarantee for monotone relation between constrained 
output and uncertain input. 

New Method for Nonlinear Probabilistic Programming 

In this work, a novel optimization framework is 
proposed for simultaneously solving design and operation 
problems of systems under uncertainty. To decompose the 
problem, the proposed approach uses a two-stage 
computation framework (see Fig. 1). The upper stage is a 
superior optimizer following the sequential strategy. Inside 
the simulation layer there is a two-layer structure to 
compute the probabilistic constraints. One is the superior 
layer, where the probabilities and their gradients are finally 
calculated by multivariate integration. The main novelty is 
contained in the other, the inferior layer, and is the key to 
the computation of the chance constraints with non-
monotonous relation. The main principal is that for the 
multivariate integration the bounds of the constrained 
output y and those for the selected uncertain variables ξξξξ
reflecting the feasible area concerning y are computed at 
temporarily given values of both the decision and the other 
uncertain variables. Thus, all local minima und maxima of 
the function reflecting y are first detected (see Fig. 2). This 
computation of the required points of [minj.y(ξξξξ)] and 
[maxjy(ξξξξ)] is achieved by an optimization step in the 
inferior layer. With the help of those significant points, the 
entire space of ξξξξ can be divided into monotonous sections 
in which the bounds of the subspaces of feasibility can be 
computed through a reverse projection by solving the 
model equations in the following step of this inferior layer. 

superior optimizer
SQP

upper stage

f, P, δf ,
δu

δP
δuu

lower stage
simulation stage

multivariate integration

superior layer

sub-layer

sub-optimizer
dynamic solver

u, y, ξSP
D

u, y, ξ ,SP
S

min

S

maxξ

δξ
δu

L δξ
δu

l

ξ
L

S
ξ

l

S
, , ,

SQP

Figure 1.   Optimization framework 
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Figure2.   Mapping feasible regions 

The bounds of feasibility are supplied to the superior 
multivariate integration layer, where the necessary 
probabilities (Eq. 1, 2) and the gradients are computed by 
adding all those feasible fractions together (see Fig. 2). 

iPr = Pr z         (1) 
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Arising changes of the integration limits are 
consistently verified for every monotone section. In case of 
variation, a reverse projection of ySP using the bisectional 
method leads to new integration limits, which are, then, 
employed to compute the probability by multivariate 
integration.  For this purpose collocation on finite elements 
is used with an optimal number of collocation points and 
intervals. 

Application to a Dynamic Reactor Network System 

The major challenge of design and operation lies in dealing 
with the conflicts between the objectives. Moreover, there 
are uncertainties, that need to be taken into consideration 
in order to make the results more reliable for practical 



realization. In this work we consider a reactor network 
system illustrated as a flowsheet in Figure 3 as a practical 
example. The reactor network consists of two reactors 
connected in series, in which two main chain reactions take 
place. Component B (CB), as the middle product, is 
deemed to be the desired product. It is assumed that the 
feed flow into the 1st reactor, F0, is the product stream 
from an upstream plant, and which is stored previously in a 
vessel as the middle buffer and can be supplied to the 
network with a controllable flow rate, but with a given 
composition and temperature. 
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Figure 3.  Reactor network flowsheet  

First of all, the potential for optimization needs to be 
investigated through preliminary simulation studies. The 
dynamic behavior of the process is computed through 
discretization by the collocation method on finite elements. 
The results of the simulation studies are illustrated in 
figure 4, where the necessity for design and operational 
optimization can be demonstrated. 
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Figure 4.   Optimization potential analysis 

As expected, the product concentration of component B 
depends on the reaction kinetics of both reactors, which 
actually depends on both the residence time and the 
temperature. Figure 4 is created for fixed volumes and thus 
F0 can roughly be seen as a reciprocal measurement for the 
residence time. It can also be seen that an increasing 
temperature allows lower residence times for fulfilling the 
purity restriction concerning CB, which allows either 
higher feed flow rates and thus higher product flow rates or 
lower design costs related to the volumes. On the other 

hand, it induces higher utility costs (UT). With regards to 
the residence time, a decision is required between higher 
flow rates or smaller volumes. Those facts lead to the 
conclusion that, for cost minimization, overall trade-off 
decisions need to be made between the temperatures, the 
flow rates and the volumes. Due to the process dynamic a 
high degree of flexibility concerning the time-dependence 
of temperatures and flow rates will lead to better optimal 
results. In reality, however, the design optimization is often 
realized first, before optimal operation policies are 
computed based on the previously optimized design 
parameters. The analysis of Figure 4 leads to the 
conclusion that better results are expected when design and 
dynamic operational optimization are both realized 
simultaneously in one optimization scheme. 

Problem Definition 

The aim of the optimization is the minimization of total 
costs. Thus the objective function includes both the design 
which implies material costs of the reactor depending on 
the volumes (Vi) and operational costs (utilities UTi)
during the time period, minus a term indicating the total 
amount of the desired product (PB), which is assumed to 
be profitable. The objective function of the optimization 
problem can be written as follows with A, B and C as 
specific price factors: 

2 22/3
i i i i

i=1 i=1
min f = min A V -B PB+ C UT

Additionally, there are lower bounds for the amount of the 
converted Product (PB) and upper bounds of utility supply 
for both reactors (UT1 and UT2) necessary to realize the 
desired trajectories of reactor temperatures in closed 
control loops. To achieve the optimization goal, the design 
parameters such as volumes (V1 and V2) of both reactors, 
as well as operational parameters such as flow rates and 
temperatures are used as free decision variables. The latter 
ones can be seen as time-dependent, which leads to greater 
improvement in the dynamic optimization problem. 

It should be noted that utility costs are caused by both 
hot utility supply for sudden increase and cold utility 
supply for sudden decrease of reactor temperatures. Thus, 
the utility costs are proportional to the absolute value of 
the current temperature deviation. This may lead to 
complications concerning the gradient computation around 
the value of the current temperature, which could be 
critical for the implementation of NLP solvers such as 
SQP. To overcome this problem, the relation of the utility 
costs to the reactor temperature deviation is approximated 
by a self formulated exponential function, which is smooth 
also around the point of the current temperature and thus 
easy to differentiate, and on the other hand close to the 
original curve. 

So as to make the optimization more robust and the 
results more reliable, uncertainties of several parameters 
need to be taken into consideration. For this example the 
kinetic parameters and the reaction enthalpies are 

T1



considered to be uncertain. Since all constraints are 
affected by the uncertain parameters, they should be 
reformulated to chance constraints. The uncertain 
parameters also have an impact on the objective function. 
The usual way is to reformulate it to its expected value. 
However, for practical application, it is more convenient to 
assure a certain reliability of the realization of the 
calculated objective value. This can be achieved by 
minimizing an upper bound ββββ and the compliance of it can 
be guaranteed with a certain reliability by formulating an 
additional chance constraint. Thus, the entire dynamic 
stochastic optimization problem will be formulated as 
follows with pi as the probability levels: 

min 
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This formulation allows the user greater flexibility to 
control the reliability of certain bounds of the objective 
value. With this formulation, it is also possible to analyze 
the impact on the optimized value of  with a variation of 
the probability limit p1. The created curve of  as a 
function of p1 can be a base for trade-off decisions 
between the upper bound of costs and the reliability. For 
instance, the end of a section, where this curve is rather 
flat, could be an interesting point for the user, since a high 
increase of p1 induces only a low increase of the cost limit. 

Numerical results 

Figures 5 illustrate the reliability of both the 
deterministic optimization results and the stochastic 
optimization results concerning the compliance of the 
upper bounds of the utility costs through variation of the 
uncertain parameters by Monte Carlo simulations. For the 
stochastic results only less than 5 % of the samples 
exceeded the bounds of feasibility as claimed in the 
formulation of the chance constraints, while for the 
deterministic results the exceeding samples are close to 
50%. Moreover, it is interesting to observe the difference 
concerning the distribution shapes of the utility costs in the 
second reactor caused by different values of the decision 
variables. This is due to the non-monotonous relation 
between the activation energy EA1 and that constrained 
output. While the simulation with deterministically 
optimized controls induces one minimum of the utility 
costs, the one with stochastically optimized controls 
induces at least two minima and one maximum. The fact 
that the shape of the curves and the number of peaks 

strongly depend on the values of the decision variables is 
illustrated in the two graphics at the bottom of the figure 5 
as the main reason why the development of this new 
approach has become necessary. 
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Figure 5.   Optimization results 

Moreover, the relationship between the probability levels 
and the corresponding values of the objective function can 
be used for a suitable trade-off decision between 
profitability and robustness. Tuning the value of Pi is also 
an issue of the relation between feasibility and profitability.
The solution of a defined problem, however, is only able to 
arrive at a maximum value Pmax which is dependent on 
the properties of the uncertain inputs and the restriction of 
the controls. 
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