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Abstract 

In this paper, we propose a new method that produces new forms of tight convex underestimators for twice continuously 
differentiable nonconvex functions. The algorithm generalizes the main ideas used in aBB. The key idea is to determine a 
new convexification function that is able to handle the off-diagonal elements of the Hessian matrix of the original 
nonconvex function. The new convexification function is based on that used in aBB, but it is enhanced with extra convex 
parametric terms. The Hessian matrix of the new convexification function is a constant non-diagonal matrix. The values 
of the parameters are determined in such a way that the effect of the off-diagonal elements in the overall underestimating 
function is minimized. As a result, the new underestimator is tighter than that produced by aBB. We discuss the 
theoretical properties of the new underestimator and we present several illustrative examples where we demonstrate the 
improvements of the new convex underestimators over those used in the original aBB method. 
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Introduction

 The main objective of this work is to develop convex 
underestimators of an arbitrarily nonconvex function, 

, that are tighter than those generated 
by the aBB method [1,4]. Tight convex underestimators 
play a very important role in the development of efficient 
deterministic algorithms for solving global optimization 
problems [2,3]. The critical issue regarding the quality of 
an underestimator is the relaxation function, which is 
subtracted from the nonconvex function it underestimates. 
We have developed a new relaxation function that shares 
the same properties as the one in aBB. That is, it is 
separable, parametric, convex, and non-negative for all 

. The advantage of the new relaxation function is 
that its parameters are selected in such a way that it always 
takes smaller values than the aBB relaxation function in 
the whole domain X. As a result, when it is subtracted 
from a nonconvex function it produces a convex 
underestimator that is tighter than the one produced by the 
aBB method. Another attractive and distinct property of 
the relaxation function is that it has a non-diagonal 

Hessian matrix. This feature allows us to explicitly treat 
the off-diagonal elements of the Hessian matrix of a 
nonconvex function and therefore reduce their effect in the 
construction process of the underestimating function.  
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Motivation 
In aBB a convex underestimator of an arbitrarily twice-
continuously differentiable nonconvex function, f(x), is 
defined as 
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where the function  is a parametric and separable 
function defined as  
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The values of the parameters  are 
calculated via a variety of methods (see [4] for a complete 
list of those methods). A very effective method is the 
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scaled Gerschgorin formula defined as 
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From the above formula it is evident that the contribution 
of the off-diagonal elements ijf and ijf , of the interval 

Hessian matrix [ ]fH

r

, can be substantial, giving rise to 

loose underestimating functions. In the next section we 
define a new relaxation function that is able to reduce the 
effect of the off-diagonal elements in the construction 
process of the underestimating function and thereby 
produce tighter underestimators. 

The new relaxation function  

We fi st define the two complementary index sets 
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where . The new relaxation function is 
defined as  
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The Hessian matrix, , of the relaxation function is a 
non-diagonal matrix, whose diagonal elements are defined 

by  and its non-diagonal 

elements by 
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. As we will see in the next section the values of 

the parameters 

ij Γ∈

ijij γβ , are defined in such a way that the 

relaxation function is convex. 

The new convex underestimating function 

The new underestimator is defined in two steps. First the 
above relaxation function, , is added to the original 
nonconvex function, f(x), producing an overestimator, that 
is, . Note that the 
function  may not be convex and does not match 
the original function at the corner points of the domain X. 
Next, a convex underestimator of  is generated by 
using the aBB methodology. That is, the convex function 

is 

generated, where a  are defined as follows 
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After several algebraic calculations the above expression 
can be expressed as a function of the parameters β , γ : 
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Furthermore, the underestimator  can be forced to 
match the original nonconvex function at the corner points 
of the domain X, by subtracting a linear function from it. 
The linear function we have decided to subtract is the sum 
of the convex envelopes of the functions 

 and q , for 

)(xLM

2

ijnji >= ,,...,2,1, .  The convex envelopes of those 
functions are defined as follows: 
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The coefficients of the convex envelopes  are 

determined by solving the following systems of linear 
equations: 
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Similarly, the coefficients of the convex envelopes 
 are determined by solving the following systems 

of linear equations: 
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The solutions of the above systems of linear equations are 
easy to find. Hence the new underestimator of the original 
nonconvex function is defined as follows 
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The function  has the following important 
properties: 

)(1 xL

Property 1: L1 is a convex function 

Property 2: L1 matches f(x) at the corner points of X. 

Property 3:  For every ( )ijijij
i ffBj +≤≤∈

4
10, β  

Property 4:  For every ( ijijij
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4
10, γ ) 

Property 5: L1 achieves its maximum separation distance 
at the middle point of the domain X.  

Calculation of the parameters β and γ  

The calculation of the parameters γβ ,  is done in such a 

way that the new underestimator  is always tighter 
than that obtained by using the aBB method. More 
specifically, the values of the parameters 
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β and γ are 
obtained by solving the following linear programming 
problem 
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THEOREM 1: If the values of the γβ , parameters are the 
optimum solution of the above linear programming 
problem, then the new underestimator  is tighter 

than the underestimator  obtained by applying 
the aBB method. 

)(1 xL
)(xLaBB

Example 

Consider the nonconvex function: 
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with [ ]5,4.11 −∈x  and . . The graph of 
that function is shown in Figure 1.  

[ 5,6.12 −∈x ]



  
 

 

Figure 1: Graph of f(x) 

The underestimator obtained by using the methodology 
described in this paper is shown in Figure 2. 

 

Figure 2: The new underestimator  )(1 xL

The difference between the new underestimator and the 
one generated by aBB is shown in Figure 3. 

 

 

Figure 3: Improvements obtained by the new 
underestimator over the underestimator 

obtained by the aBB method 
)(1 xL

As can be seen in the above figure the improvements in 
the underestimating function take place mostly at its sides. 
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