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Abstract 

In this paper, production planning and scheduling problems are addressed through a hierarchical 
framework. The planning problem aggregates orders in the planning period and considers uncertainty 
utilizing a multi-stage stochastic programming formulation where three stages are considered with 
increasing level of uncertainty. The planning model includes material balances and time horizon 
constraints involving a sequence factor to reflect the recipe complexity in the planning model. The 
production for the current stage is then provided to the scheduling problem, which is solved using an 
existing continuous-time formulation. In order to reduce the computational complexity of the overall 
approach, a Lagrangean decomposition method is utilized and the general framework is implemented 
based on rolling horizon strategy. 
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Introduction  

Production planning determines the optimal allocation of 
resources within the production facility over a time 
horizon of a few weeks up to few months. However 
detailed scheduling decisions for the current period 
should be simultaneously considered in order to 
guarantee feasibility of the production objective, which 
leads to computationally intractable mathematical 
models. Uncertainty should also be taken into account 
since product demands and prices are fluctuating over 
the planning horizon.  

A most commonly used approach to address this 
problem in literature is to follow a hierarchical solution 
methodology with two levels of decision-making, the 
planning level and the scheduling level in order to 
generate smaller and thus more tractable sub-problems 
(Papageorgiou and Pantelides, 1993).  At the planning 
level an aggregated model is used to determine the 
optimal production requirements for each sub-period 
whereas the scheduling problem is solved to realize these 
production targets following a detailed production 
schedule. Feasibility is enforced through an iterative 
solution procedure of planning and scheduling problems. 
Although only the simultaneous consideration of 
planning and scheduling can result in the optimal 
production schedule, it is expected that the hierarchical 

approach can generate near-optimum solutions with 
reasonable computational time. Most of the existing 
approaches however are limited due to overly simplified 
planning level problem, the lack of uncertainty and task 
sequence feasibility consideration. 

This paper proposes a general hierarchical 
framework for planning and scheduling problems 
utilizing a multi-stage planning model to account for 
uncertainty as presented in the next section. Lagrangean 
decomposition is utilized to reduce the size of the 
planning problem by decomposing it into several sub-
problems of the same structure. Following the basic ideas 
of the existing short-term scheduling formulation 
proposed by Ierapetritou and Floudas (1998) a modified 
model is proposed to determine the production schedule 
for the current period. In the last section, an overall 
solution framework is presented and illustrated with an 
example problem. 

Planning model

The overall decision process is based on the idea of 
rolling horizon strategy. The planning time horizon is 
decomposed into three periods with various durations 
considering the significance of variability and forecasting 
capability. The first period with the smallest duration is 
denoted as ‘current’ period where operation parameters 
are considered deterministic. The second period with 
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larger duration is subject to small variability of demands 
and prices, and the final period with largest duration has 
higher level of fluctuations regarding demands and 
prices. Uncertainty is modeled using the ideas of multi-
stage programming (Dantzig, 1955), where each 
planning period corresponds to different stage. 
Uncertainty is expressed by incorporating a number of 
scenarios at different stages with more scenarios towards 
the last period in order to represent the increasing level 
of uncertainty in future parameter realizations. Each 
scenario is associated with a weight representing the 
probability of such realization.  Moreover, in order to 
reduce the model size it is assumed that at each stage 
each unit will process a certain number of batches at a 
full capacity and a single batch at flexible size. 

Due to space limitations, a brief description of the 
problem formulation follows. The time horizon 
constraints are the most important ones in the planning 
model since they represent the requirement that all tasks 
should be implemented by the end of the specific time 
period as shown in equation (1). 

        (1) 

where J, Q and K are the sets of units, scenarios and 
stages, respectively; Hk is the time duration of stage k;
proc_time(i,j,l,q,k) is the processing time of task i in unit 
j for batch l, scenario q and stage k; and µk ( 0≤µk≤1 ) is 
a sequence factor, which represents the impact of the task 
sequence requirements to the planning level problem and 
is included to avoid the incorporation of the detailed 
sequence constraints at the planning problem. 

Other constraints include capacity constraints that 
enforce the requirement of lower and upper bounds on 
batch sizes, duration constraints that define the 
processing time of batch sizes, mass balances and 
demand constraints in order to determine the necessary 
batches to satisfy the aggregated orders. These 
constraints are similar to those in the short-term 
scheduling formulation of Ierapetritou and Floudas 
(1998). The key variables, however, are the production 
levels of the first period, which are linked to the demand 
in the scheduling problem. 

The objective function (2) maximizes the overall 
profit and includes the economic considerations for all 
three stages including product revenue, cost of materials, 
inventory cost, backorder cost and cost of equipment 
utilization which involves a fixed and a variable parts.  
where Matl_Cost(s) is the cost of consumed material s;
revenue(s) is the revenue from selling material s;

Inven_Cost(s) and Backorder_Cost(s) are the storage 
cost and the cost of unsatisfied orders for material s
during the planning period, respectively; while 
Oper_Cost(i,j) is the operating cost calculated based on 
the number of batches that are performed for task i in 
unit j; Prob(q) is the probability of scenario q; and 
weight(k) is defined as a coefficient of relative 
importance of stage k.

It should be pointed out that the planning model 
involves a large number of variables and constraints due 
to the scenarios considered in the second and third 
stages, which are derived from forecasting model. Thus, 
in order to reduce the computational complexity of the 
solution of the planning problem, Lagrangean 
decomposition is utilized. Since the storage variables are 
the only set of connecting variables between the edges of 
the scenario tree, the problem can be decomposed to 
several sub-problems by duplicating these variables as 
shown in Figure 1. These sub-problems have the same 
model structure and therefore this decomposition 
approach can be used for large number of scenarios and 
stages.  

Scheduling model 

The scheduling problem provides a feasible 
production schedule for the current period. Since all the 
product orders are aggregated in the planning model, the 
scheduling model should determine the details of task 
sequence in order to satisfy all individual orders. 
Moreover, the production of the first period should also 
take into consideration the entire planning horizon that 
may require excessive inventory of some products in 
order to satisfy the demand of future periods.  

Assuming that the parameters in the first period are 
deterministic, the scheduling problem is solved using the 
continuous time formulation proposed by Ierapetritou 
and Floudas (1998) modified to address the above two 
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considerations. First, all the orders are required to be 
satisfied by their due dates as represented in constraints 
(3) where S, and N are the sets of materials, and event 
points, respectively; production(s,n) is the summation of 
all the batches that corresponds to the production of 
material s by event point n; while orders,n represents an 
individual order of product s that need to be satisfied by 
event point n (Ierapetritou et al., 1999).  

                  (3) 

In order to consider the requirements imposed by the 
planning problem, additional production might be 
required at the current period due to increased demand in 
future time periods. The additional requirements are 
treated as soft constraints (4) in the scheduling model 
and associated with slack variables.   

       (4) 

where actual_prods is the production requirement of 
material s from the results of the planning model.  

The objective of the scheduling problem is to 
minimize the sum of the slack variables (slack(s)) in 
priority order (prioritys) so as to implement the 
production plan obtained from the planning model as 
shown in (5).  

            (5) 

The resulted scheduling problem corresponds to a 
MILP and can be solved using available commercial 
solvers (e.g. CPLEX, XPRESS-MIP). However, the 
introduction of a large number of discrete time 
requirements results in an increased complexity since a 
number of redundant event points should be incorporated 
to guarantee solution feasibility and optimality. Thus, an 
iterative schedule is introduced here, where the discrete 
time requirements are first eliminated and the scheduling 
problem is solved. The solution is then examined for any 
order violation. If there is no violation the solution is 
optimal, otherwise a number of cuts are introduced into 
the scheduling problem and another schedule is 
generated.  

Alternatively, for cases where the processing times 
are fixed and there are a number of discrete orders to be 
satisfied, discrete-time formulation can be considered for 
the scheduling problem.   

Since this approach considers a dynamic process, 
there is risk that orders cannot be realized at a particular 
period due to inaccurate forecasting, rushed orders or 
unexpected events. When this situation occurs, the 
scheduling problem becomes infeasible. In such a case, 
the backorder is allowed for the current period. The 
amount of backorder is calculated and the planning 
model is reformulated to force the backorder to be 
produced in the earliest future period.  

Due to the dynamic nature of the decision making 
process, the estimation of sequence factor and 

forecasting of scenarios may change during the planning 
time horizon. Therefore it is necessary to keep inspecting 
and updating them in the iterative procedure so that the 
planning results are reasonable to the scheduling 
problem.  

Solution framework 

In this section, the overall hierarchical framework is 
presented and its flowchart is shown in Figure 2. The 
planning model is obtained by using different stages 
where product orders are aggregated at each stage. A 
scenario tree is generated regarding the uncertain 
parameters. The resulted planning model is solved as a 
MILP problem or utilizing Lagrangean decomposition by 
duplicating the storage variables, which gives an upper 
bound to the original problem as well as good candidate 
of integer variables. Heuristics are then used by fixing 
the non-zero integer variables and solving the original 
problem to yield a lower bound (Wu and Ierapetritou, 
2003). The production of the current period is then 
passed to the scheduling problem where all parameters 
are considered deterministic and the orders are 
disaggregated. The production schedule is determined to 
satisfy each individual order as well as produce the 
additional amounts based on the result from the planning 
model.  

Schedule realizes the production target of planning 
problem when all the slack variables are zero. When this 
amount hasn’t been fulfilled, two situations are 
considered. 1) The orders in the current period are not 
satisfied. Backorder is then allowed and the objective of 
scheduling problem becomes minimizing the backorder. 
Meanwhile, demand in the planning model is adjusted to 
reflect this backorder in the next period. 2) The orders 
are satisfied, but the additional production is not. The 
sequence factor is adjusted to represent precisely the 
production ability and the planning model is resolved. 
This iterative procedure continues until convergence is 
achieved when the planning and scheduling results agree. 
At the end of the first period the model is reformulated 
utilizing a rolling horizon strategy so that the schedule of 
the following period can be determined. A motivating 
example is presented below to illustrate the proposed 
methodology. 

This framework has been applied to a motivating 
example. The State Task Network (STN) representation 
and the detailed data for this example can be found in 
Ierapetritou and Floudas (Example 2, 1998). A planning 
problem with time horizon of 240 hours is considered 
where 8-hour schedules need to be determined 
dynamically. The actual demand is shown in Figure 3. 
The planning model includes three stages corresponding 
to 8, 16 and 48 hours, respectively.  Three demand 
scenarios are considered for each branch of the scenario 
tree corresponding to high, average and low level of 
demand forecasting. Therefore, there are 3 scenarios for 
stage 2 and total 9 scenarios for stage 3. As discussed 
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above, this planning problem is decomposed into 5 sub-
problems of reduced size by duplicating the storage 
variables between three stages as shown in Figure 1 and 
utilizing Lagrangean decomposition. The detailed 
schedule is determined when the production from 
schedule model matches the results of the planning 
model. Inventories are then updated and a new period is 
considered utilizing a rolling horizon approach. The 
process is repeated until the whole time horizon of 240 
hours is covered. The results are compared to that of 
using short-term scheduling for the current period 
without considering the future time periods. Using this 
proposed approach, the overall profit is increased from 

19886.54 to 21416.61 due to the fact that the planning 
model can foresee the demand peak and thus require 
more production when there is available capacity. 
Although the inventory levels increase, better control of 
backorders is achieved. The average backorder level is 
only 22.5% compared with the case where no planning 
periods is considered and the number of periods that has 
backorders is reduced from nine to seven.  It should be 
pointed out that although this is only a motivating 
example, the proposed approach is general and can be 
applied to realistic problems with case-specific 
constraints.  

Conclusions 

This paper addresses a hierarchical solution 
approach for solving dynamic production planning and 
scheduling problems. The planning model involves a 
multi-stage formulation while the scheduling model 
generates detailed schedule for the first planning period. 
Lagrangean decomposition is used to solve the problem 
efficiently. An iterative procedure between planning and 
scheduling level is processed to ensure the consistency of 
the optimality of planning and scheduling problems. 
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Nomenclature 

Indices   Sets 
      i task   J       Units 
      j unit   K     Stages 
      k stage   N     Event points 

l batch    Q     Scenarios 
       n     event point   S     Materials 
       q     scenario 

s material  
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