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Abstract

In this paper, a number of symmetry-breaking (SB) constraints are considered to improve the
performance and decrease computational effort needed in the solution of Process Plant Layout (PPL)
Problems. The PPL problems are formulated as mixed-integer linear (MILP) models. In order to
determine the efficiency of the symmetry-breaking formulations, test runs are carried out on three
different problem sets. Both single-floor and multi-floor problems are examined.
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Introduction

Plant layout plays an important role in engineering
design of industria facilities, Patsiatzis and Papageorgiou
(2003). The PPL problem involves decisions concerning
the spatial alocation of equipment items and required
connections among them. The resulting mathematical
models are combinatorial optimisation problems which
usually require significant computational effort for their
solution. It is evident that enhancement of the
computational effort required to solve these problems is a
topic of great relevance. Symmetries in form of multiple
optimal solutions often consume additional CPU time in
aready tedious layout problems thus worsening the overall
solution performance.

The PPL problems can be formulated as non-convex
MINLP or as discretised MILP problems according to
Patsiatzis and Papageorgiou (2002). A number of
rectangular units are to be sited in a rectangular plant area
using a limited number of floors. The objective involves
Yl minimisation of layout
costs including
connectivity costs and
congtruction costs. The
detailed PPL for the given
problem is determined by
resolving number  of
floors, land area, floor
alocation of each item
and detailed floor layout.
Figure 1. Example of symmetric layout solutions
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Due to the geometry of the generalised PPL problem,
symmetric layout solution aternatives (see figure 1) will
be received for each problem implying the existence of
multiple equivalent optimal solutions thus resulting in
longer CPU time. Better efficiency in terms of CPU time
can be obtained by breaking symmetric solutions.

Symmetry Breaking Constraints

In this paper, a set of different SB constraints are
presented and empirically tested. Each constraint is tested
on different kind of PPL problems and improvements of
the performance is evaluated. SB constraint at.l is
designed to break the symmetry in the layout using the
following constraint for apair of unitsi and k,

X+Y =% —-Y <0 (€
The sum of the x- and y-values for the centroid of uniti is
defined to be less or equa to the corresponding sum of
item k. This constraint will lock unit i’s position in relation
to unit k, thereby breaking the
symmetry as shown in figure 2.
¥ — SB constraint 1, applied to
Facility Layout Problems, is
presented in Westerlund and
Castillo (2002).
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Figure 2. B constraint Alt.1



SB constraint alt.2 forces the centroid of unit i to be
positioned in the lower left part of the whole facility area
using the constraintsin eq.(2) asillustrated in figure 3.

X =2 X <0& Yy, —2Y,, <0 %)

In Eq.2 X, is the length of the whole facility area in x-
direction and Y, is the length

of the whole facility area in y-
iy direction. This constraint will
i lock unit i’s position in relation
to the whole facility area,
thereby breaking the symmetry.
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Figure 3. SB congtraint alt.2

SB congtraint alt.3 forces one of the non-overlapping
binary variables to zero, together with constraints of
aternative 1, equation (1). This procedure locks unitiin a
compass point NE (North-East) of unit k as illustrated in
figure 4. Unit i may also be locked in position NW, SE or
SW of k by corresponding constraints. The constraints for
at.3 are,

X+Y=%-Y%20&E]L =0 ©)
The EL, is one of two binary variables used to avoid

overlapping between the two selected units i and Kk,
Papageorgiou and Rotstein (1998). If E1, =0 then,

d +d,

X =X, > % oy -y > according to the

3 non-overlapping rules used in
] Patsiatzis and Papageorgiou
(2002). SB constraint alt.3 is
based on the symmetry-
\ breaking considerations of
™ Castilo and  Westerlund
(2002).
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Figure 4. B constraint alt.3
SB congtraint at.4 is a further developed version of
at.3 suitable for multi-floor cases,

X+Yy —-X-Y 2 Z, & EL =0 4
Z, isabinary variable defining whether unitsi and k are

positioned at the same floor or not. Zz, need to be
included in at.4 in multi-floor cases to prevent exclusion
of the global

optimal  solution
in case unitsi and
k ae placed
above each other
a the same x-
and y-variable
values as shown
infigure 5.

1k
Figure 5. Multi-floor layout
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Parameter o is defined as the sum of half the length, |
or the depth, d (the ones that are smaller) of both the two
units used in the constraint,
a=min(3l;,3d,)+minGl,,3d,) 5
Units i and k may be selected in three different ways, as
illustrated in examples ex2 1-ex2 10. In the first
dternative (at.4a) the two units with the highest
connection costs are locked in relation to each other. The
second alternative (alt.4b) uses the two smallest units and
the third alternative (alt.4c) the two biggest units. A similar
SB strategy as dternative 4, applied to facility layout
problems, is presented in Sherali et a. (2002) where the
two units having the largest flow are selected. In case of
ties, the two units with the largest areas are selected. This
corresponds to alt.4a and 4c in this paper.

Ilustrative Examples

In this study, three different problem sets are solved to
highlight the benefit of the SB constraints. Both single-
floor and multi-floor problems are considered. The first
problem set, exl l-exl 10, consist of multi-floor
problems with atotal of five unitsto be optimally sited in a
multi-floor process plant facility. The second set, ex2_1-
ex2_10, aso consists of multi-floor problems but with
seven units to be sited in the multi-floor plant area. Both
the first and the second set of problems are limited to use a
maximum of three floors. The third problem set, SF 1 -
SF_10 considers single-floor problems with seven units to
be sited in the process plant area. The multi-floor example
problems are based on the formulations of Patsiatzis and
Papageorgiou (2002) and the single-floor problems are
based on Papageorgiou and Rotstein (1998).

To get aclear picture of how the SB constraints affect
both the solution quality and the computational effort
required for solution, performance charts for each problem
type are sketched. The first 10 problems are solved using
two different discretisation grids. Problems solved using
the first grid reaches solution faster while problems solved
using the second one get better quality solutions as seen in
figures 6 and 7. The two latter problem sets are solved
using only a coarse discretisation grid. The performance
charts (Figure 6, 7, 8 and 9) show the performance
indicator versus the CPU time. The performance indicator
displayed on the vertical axisis defined as,

iw L where =1 Jn—dh 6)
— n N n ;

J,is the solution in question for problem n, J’ is the

global optimal solution and N the number of problems
solved at CPU time t. The CPU time at each point is the
CPU time required for solution of the considered problem
the first point hence showing the fastest solution and the
last point showing the slowest solution.



1 problem sets. The solution quality is shown as a percentage

00 of the global optimum.
o8 seonsta—] 4 ;{ / . =—NosB The globall opti mum of each problem is obtained with
07 ’* My SB I the global optimisation code GGPECP, Westerlund and
06 {—SBconst3———zr Westerlund (2003) using the non-convex MINLP
Sys _’Z formulation in Patsiatzis and Papageorgiou (2002). The
§04753 const.4a global optimum of each problem is shown in the last
' 7/ —7/—53 const.4b column in tables 1-4. As the objective in the problemsisto
o ‘/-LSB ot 2 minimise costs, values above 100% indicate that the global
02 75/ optimum is not reached. The solution quality values in
01 7 tables 1-4 are only affected by the discretisation grid used
o ' and not by the SB congtraints. The SB constraints solely
1 CPU time 0 00 affect the CPU time.
Figure 6. Performance f:harts for multi-floor examples Table 1. Solution data for examples 1_1-1 10 (coarse grid)
1 1to1 10 (Coarsegrid) CPU time Solution  Global
1 Ex |NoSB Altl Alt2 Alt3 Altda Altdb Alt4c Quality[%] Optimum
0.9 / /V 1.1 55 28 6.0 34 5.7 11.3 5.9 113 72649
: / 7 12 7.6 150 132 132 6.6 8.0 5.0 135 94452
08 SB const.4a I P 13 3.0 3.7 7.0 2.4 1.7 8.4 2.8 111 174654
SB const.4c j/ / “——No SB 14 337 217 83 131 50 100 63 114 415672
0.7 4 15 8.6 5.1 9.0 6.4 3.1 6.2 22 121 77740
206 1.6 13.0 11.8 8.8 15 1.9 1.9 25 114 85462
= SB const.3 ? L sBconstab 1.7 19 18 19 08 08 11 14 138 31274
=051 1.8 7.9 12.7 4.1 31 16.8 4.8 2.7 109 387644
0.4 / 1.9 14 25 1.6 2.2 1.7 3.2 0.6 128 53800
{8 const.2 110 | 58 16 84 13 16 28 18 136 53532
0.3 1 P Median 6.7 4.4 7.6 2.7 25 55 2.6
,/‘LSB const.1
0.2 §
0.11 Table 2. Solution data for examples1_1-1_10 (fine grid)
0 i CPU time Solution ~ Global
0 CPU time 100 1000 Ex |NoSB Altl Alt2 Alt3 Alt4a Alt4b Alt.4c Quality[%] Optimum
. A 1.1 120.4  98.0 76.4 34.3 80.8 1350 993 101 72649
Figure 7. Performance charts for multi-floor examples 12 | 3141 4455 2619 1569 1160 4062 OL1 108 94452
1 1to1 10 (Finegrid) 1.3 1261 1220 512 531 815 1664 286 103 174654
1 peformence profle is on the ef hd sde of 4 (150 12 e e o o
another, the first aternative solves the considered 16 | 829 486 398 263 245 823 480 106 85462
problems faster than the latter one. A performance profile 17 | 45 252 201 278 172 503 473 105 31274
end| ng Up at a h|gher Val ue than another |nd|cates that the 1.8 498.8 168.6 311.0 479 488 1412 95.1 104 387644
flrﬁ alterna[ive in average giVe better &)lutionS than the 19 458.8 2049 4653 210.0 716.5 2234 4136 108 53800
110 39.4 1018 1449 333 315 41.7 37.6 107 53532
Iatter one. Median | 123.2 1122 1015 41.1 81.1 1381 695
The endpoint of the performance profile in vertical ! B const 42— ..
direction gives the fractional average reached of the global 09 , 7£
optimum for all problems. The endpoint in time/horisontal 08
direction indicates the CPU-time within which all problems 07
considered were solved using the corresponding 06
aternative. The endpoint alone should however not be g B const 3———p~ ——NosB
seen as a performance indicator for the SB constraint in g’ S8 comst 4 B comst 1
question. One dow test run might give mideading 04 T S8 corst2
information of the SB constraint if the endpoint of the 03 S8 const 4b .
profile alone is seen as a characteristic for the average 02 Y 7
performance. This can for example be seen in fig.9 (Alt.1 o1 /
& 2) andinfig.7 (Alt. 4a3). The endpoint should be seen as '
the time required for al examples to be solved as it 0 1 o CPUtimep, 000 10000 100000

indicates the CPU time of the slowest example in the set. )
Figure 8. Performance charts for ex2_1- ex2_10.

The tables below (table 1-4) show both the CPU time
and the solution quality of each problem in the three
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Figures 6, 7, 8, and 9 show clear indications of the
usefulness of some of the SB constraints. SB Alt.3 appears
to work fine on most problems which can be seen by the
fairly smooth shape of the curves. SB Alt.4a and 4c aso
show indications of even performance quality while alt.2
for example appears to work fine on some problems but
even making the performance worse in other cases (see
figure 6 and 9).

Effective SB constraints should show clear indications
of even performance quality to assure that they do work
properly in most cases. SB constraints Alt.4a and 4c are
generally taken the most efficient alternatives used on both
single-floor and multi-floor PPL problems and are
therefore the ones recommended by the authors.

Table 3. Solution data for examplesex2_1to ex2_10

CPU time Solution  Global
Ex. [NoSB Altl1 Alt2 Alt3 Alt4a Altdb Alt.4c Quality%] Optimum
21| 7664 2046 2577 4821 1139 746 390 109 46742
22 | 38344 10838 18815 497.6 2948 16282 1537 106 68383
2.3 |6ag75.2 272867 16656 3364 11724 8164 9112 109 43330
2.4 | 14727 13572 21295 2320 689.6 34394 1567 107 63425
2.5 | 140745 21194 23660 3763.9 28952 64504 10543 108 67047
2.6 |12517.1 195495 153668 6104.7 1919.8 352573 25155 103 49569
2.7 | 6379.7 44924 40890 29181 19329 6217.8 58416 101 93604
2.8 | 6311.0 37164 16422 1008 1191 3281 1980 102 54876
29| 26 40 6.1 28 28 45 27 111 13068
210 | 81105 57248 24022 133962 32502 3803.6 27161 102 123585
Median | 6345.35 2917.87 200548 489.885 931 25338 55456

Since no area cost is used in the single-floor problems,
no discretisation of the plant area is needed and the global
optimum of the examples is reached in every run. This is
seen in figure 9 where all performance profiles reach a
solution quality of 100%. The solution quality shown as a
percentage of the global optimum is also shown in table4.
The relatively smooth curves for SB constraint alternatives
43, 4b and 4c seen in figure 9 indicate that the considered
SB constraints work well on @l the single-floor problems.

1

0.9

08 SB const.4b

SB const.4c

SB const.4a

1 o CPUtime o 1000

Figure 9. Performance charts for examples SF_1-S-_10
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Table 4. Solution data for examples SF_1- S-_10
CPU time Solution Global
Ex. INoSB Alt1 AIt.2 Alt3 Alt.4a Alt.4b Alt.4c Quality[%] Optimum
SF_1]1114 58 53 7330 30 42 68 100 9948.0
SF_2 1311 228 275 99 201 211 69 100 11740
SF_3 11108 734 501 136 41 179 205 100 5264
SF41 99 48 153 647 68 137 60 100 13465
SF5| 632 266 845 562 381 291 165 100 11774
SF_6 | 1940 414 383 9667 59.6 649 17.7 100 8716
SF_7 | 50.0 31923 6829 19.3 215 241 893 100 16769
SF_ 81 149 119 141 1241 1563 164 193 100 10049
SF9] 26 42 96 18 31 30 50 100 2074
SF_10] 1052 247 1546 583 99 171 9.2 100 23953
Median | 405 238 329 572 150 175 128

The median CPU time shown in the last row of tables
1, 2, 3 and 4 is intended to complement the performance
profiles in evaluating the performance of the SB
congtraints, giving each SB dternative an average
performance indicator.

Conclusions

Symmetry breaking is an effective way of reducing
computational efforts required to solve different kind of
layout problems. The benefit of incorporating symmetry-
breaking constraints within  existing mathematical
formulations for process plant layout has been illustrated
through three different problem sets.
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