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Abstract 

In this paper, a number of symmetry-breaking (SB) constraints are considered to improve the 
performance and decrease computational effort needed in the solution of Process Plant Layout (PPL) 
Problems. The PPL problems are formulated as mixed-integer linear (MILP) models. In order to 
determine the efficiency of the symmetry-breaking formulations, test runs are carried out on three 
different problem sets. Both single-floor and multi-floor problems are examined. 
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Plant layout plays an important role in engineering 
design of industrial facilities, Patsiatzis and Papageorgiou 
(2003). The PPL problem involves decisions concerning 
the spatial allocation of equipment items and required 
connections among them. The resulting mathematical 
models are combinatorial optimisation problems which 
usually require significant computational effort for their 
solution. It is evident that enhancement of the 
computational effort required to solve these problems is a 
topic of great relevance. Symmetries in form of multiple 
optimal solutions often consume additional CPU time in 
already tedious layout problems thus worsening the overall 
solution performance.  

 
The PPL problems can be formulated as non-convex 

MINLP or as discretised MILP problems according to 
Patsiatzis and Papageorgiou (2002). A number of 
rectangular units are to be sited in a rectangular plant area 
using a limited number of floors. The objective involves 

minimisation of layout 
costs including 
connectivity costs and 
construction costs. The 
detailed PPL for the given 
problem is determined by 
resolving number of 
floors, land area, floor 
allocation of each item 
and detailed floor layout. 

Figure 1. Example of symmetric layout solutions 

Due to the geometry of the generalised PPL problem, 
symmetric layout solution alternatives (see figure 1)  will 
be received for each problem implying the existence of 
multiple equivalent optimal solutions thus resulting in 
longer CPU time. Better efficiency in terms of CPU time 
can be obtained by breaking symmetric solutions. 

Symmetry Breaking Constraints 

In this paper, a set of different SB constraints are 
presented and empirically tested. Each constraint is tested 
on different kind of PPL problems and improvements of 
the performance is evaluated. SB constraint alt.1 is 
designed to break the symmetry in the layout using the 
following constraint for a pair of units i and k, 

0≤−−+ kkii yxyx     (1) 

The sum of the x- and y-values for the centroid of unit i is 
defined to be less or equal to the corresponding sum of 
item k. This constraint will lock unit i’s position in relation 

to unit k, thereby breaking the 
symmetry as shown in figure 2. 
SB constraint 1, applied to 
Facility Layout Problems, is 
presented in Westerlund and 
Castillo (2002). 
 
 

Figure 2. SB constraint Alt.1 



  
 

SB constraint alt.2 forces the centroid of unit i to be 
positioned in the lower left part of the whole facility area 
using the constraints in eq.(2) as illustrated in figure 3. 
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In Eq.2 
maxX is the length of the whole facility area in x-

direction and 
maxY   is the length 

of the whole facility area in y-
direction. This constraint will 
lock unit i’s position in relation 
to the whole facility area, 
thereby breaking the symmetry. 
 

Figure 3. SB constraint alt.2 
 

SB constraint alt.3 forces one of the non-overlapping 
binary variables to zero, together with constraints of 
alternative 1, equation (1). This procedure locks unit i in a 
compass point NE (North-East) of unit k as illustrated in 
figure 4. Unit i may also be locked in position NW, SE or 
SW of k by corresponding constraints. The constraints for 
alt.3 are, 

0≥−−+ kkii yxyx  & 01 =ikE    (3) 

The ikE1  is one of two binary variables used to avoid 

overlapping between the two selected units i and k, 
Papageorgiou and Rotstein (1998). If 01 =ikE  then, 
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non-overlapping rules used in 
Patsiatzis and Papageorgiou 
(2002). SB constraint alt.3 is 
based on the symmetry-
breaking  considerations of 
Castillo and Westerlund 
(2002). 
 

Figure 4. SB constraint alt.3 
 

SB constraint alt.4 is a further developed version of 
alt.3 suitable for multi-floor cases, 

 

ikkkii Zyxyx ⋅≥−−+ α   & 01 =ikE   (4)   

ikZ  is a binary variable defining whether units i and k are 

positioned at the same floor or not.  
ikZ  need to be 

included in alt.4 in multi-floor cases to prevent exclusion 
of the global 
optimal solution 
in case units i and 
k are placed 
above each other 
at the same x- 
and y-variable 
values as shown 
in figure 5. 

Figure 5. Multi-floor layout 

Parameter α is defined as the sum of half the length, l 
or the depth, d (the ones that are smaller) of both the two 
units used in the constraint, 
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Units i and k may be selected in three different ways, as 
illustrated in examples ex2_1-ex2_10. In the first 
alternative (alt.4a) the two units with the highest 
connection costs are locked in relation to each other. The 
second alternative (alt.4b) uses the two smallest units and 
the third alternative (alt.4c) the two biggest units. A similar 
SB strategy as alternative 4, applied to facility layout 
problems, is presented in Sherali et al. (2002) where the 
two units having the largest flow are selected. In case of 
ties, the two units with the largest areas are selected. This 
corresponds to alt.4a and 4c in this paper.  

Illustrative Examples 

In this study, three different problem sets are solved to 
highlight the benefit of the SB constraints. Both single-
floor and multi-floor problems are considered. The first 
problem set, ex1_1–ex1_10, consist of multi-floor 
problems with a total of five units to be optimally sited in a 
multi-floor process plant facility. The second set, ex2_1-
ex2_10, also consists of multi-floor problems but with 
seven units to be sited in the multi-floor plant area. Both 
the first and the second set of problems are limited to use a 
maximum of three floors. The third problem set, SF_1 - 
SF_10 considers single-floor problems with seven units to 
be sited in the process plant area. The multi-floor example 
problems are based on the formulations of Patsiatzis and 
Papageorgiou (2002) and the single-floor problems are 
based on Papageorgiou and Rotstein (1998). 

 
To get a clear picture of how the SB constraints affect 

both the solution quality and the computational effort 
required for solution, performance charts for each problem 
type are sketched. The first 10 problems are solved using 
two different discretisation grids. Problems solved using 
the first grid reaches solution faster while problems solved 
using the second one get better quality solutions as seen in 
figures 6 and 7. The two latter problem sets are solved 
using only a coarse discretisation grid. The performance 
charts (Figure 6, 7, 8 and 9) show the performance 
indicator versus the CPU time. The performance indicator 
displayed on the vertical axis is defined as, 
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nJ is the solution in question for problem n, *
nJ  is the 

global optimal solution and N the number of problems 
solved at CPU time t. The CPU time at each point is the 
CPU time required for solution of the considered problem 
the first point hence showing the fastest solution and the 
last point showing the slowest solution.  
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Figure 6. Performance charts for multi-floor examples  
1_1 to 1_10 (Coarse grid) 
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Figure 7. Performance charts for multi-floor examples 
1_1 to 1_10 (Fine grid) 

 

If a performance profile is on the left hand side of 
another, the first alternative solves the considered 
problems faster than the latter one. A performance profile 
ending up at a higher value than another indicates that the 
first alternative in average give better solutions than the 
latter one.  

 
The endpoint of the performance profile in vertical 

direction gives the fractional average reached of the global 
optimum for all problems. The endpoint in time/horisontal 
direction indicates the CPU-time within which all problems 
considered were solved using the corresponding 
alternative. The endpoint alone should however not be 
seen as a performance indicator for the SB constraint in 
question. One slow test run might give misleading 
information of the SB constraint if the endpoint of the 
profile alone is seen as a characteristic for the average 
performance. This can for example be seen in fig.9 (Alt.1 
& 2) and in fig.7 (Alt. 4a).  The endpoint should be seen as 
the time required for all examples to be solved as it 
indicates the CPU time of the slowest example in the set.  

 
The tables below (table 1-4) show both the CPU time 

and the solution quality of each problem in the three 

problem sets. The solution quality is shown as a percentage 
of the global optimum.  

 
The global optimum of each problem is obtained with 

the global optimisation code GGPECP, Westerlund and 
Westerlund (2003) using the non-convex MINLP 
formulation in Patsiatzis and Papageorgiou (2002). The 
global optimum of each problem is shown in the last 
column in tables 1-4. As the objective in the problems is to 
minimise costs, values above 100% indicate that the global 
optimum is not reached. The solution quality values in 
tables 1-4 are only affected by the discretisation grid used 
and not by the SB constraints. The SB constraints solely 
affect the CPU time.   
 

Table 1. Solution data for examples 1_1-1_10 (coarse grid) 
CPU time   Solution Global

Ex No SB Alt.1 Alt.2 Alt.3 Alt.4a Alt.4b Alt.4c Quality[%] Optimum

1_1 5.5 2.8 6.0 3.4 5.7 11.3 5.9 113 72649

1_2 7.6 15.0 13.2 13.2 6.6 8.0 5.0 135 94452

1_3 3.0 3.7 7.0 2.4 1.7 8.4 2.8 111 174654

1_4 33.7 21.7 8.3 13.1 5.0 10.0 6.3 114 415672

1_5 8.6 5.1 9.0 6.4 3.1 6.2 2.2 121 77740

1_6 13.0 11.8 8.8 1.5 1.9 1.9 2.5 114 85462

1_7 1.9 1.8 1.9 0.8 0.8 1.1 1.4 138 31274

1_8 7.9 12.7 4.1 3.1 16.8 4.8 2.7 109 387644

1_9 1.4 2.5 1.6 2.2 1.7 3.2 0.6 128 53800

1_10 5.8 1.6 8.4 1.3 1.6 2.8 1.8 136 53532

Median 6.7 4.4 7.6 2.7 2.5 5.5 2.6
 

 

 
Table 2. Solution data for examples 1_1-1_10 (fine grid) 

CPU time   Solution Global

Ex No SB Alt.1 Alt.2 Alt.3 Alt.4a Alt.4b Alt.4c Quality[%] Optimum

1_1 120.4 98.0 76.4 34.3 80.8 135.0 99.3 101 72649

1_2 314.1 445.5 261.9 156.9 116.0 406.2 91.1 108 94452

1_3 126.1 122.0 51.2 53.1 81.5 166.4 28.6 103 174654

1_4 195.9 194.6 126.6 173.6 164.9 214.6 342.1 105 415672

1_5 103.6 102.5 66.0 10.9 116.2 72.2 39.2 107 77740

1_6 82.9 48.6 39.8 26.3 24.5 82.3 48.0 106 85462

1_7 41.5 25.2 29.1 27.8 17.2 50.3 47.3 105 31274

1_8 498.8 168.6 311.0 47.9 48.8 141.2 95.1 104 387644

1_9 458.8 204.9 465.3 210.0 716.5 223.4 413.6 108 53800

1_10 39.4 101.8 144.9 33.3 31.5 41.7 37.6 107 53532

Median 123.2 112.2 101.5 41.1 81.1 138.1 69.5
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Figure 8. Performance charts for ex2_1- ex2_10. 

 
 



  
 
 

Figures 6, 7, 8, and 9 show clear indications of the 
usefulness of some of the SB constraints. SB Alt.3 appears 
to work fine on most problems which can be seen by the 
fairly smooth shape of the curves. SB Alt.4a and 4c also 
show indications of even performance quality while alt.2 
for example appears to work fine on some problems but 
even making the performance worse in other cases (see 
figure 6 and 9).  
 

Effective SB constraints should show clear indications 
of even performance quality to assure that they do work 
properly in most cases. SB constraints Alt.4a and 4c are 
generally taken the most efficient alternatives used on both 
single-floor and multi-floor PPL problems and are 
therefore the ones recommended by the authors.  
  

Table 3. Solution data for examples ex2_1 to ex2_10 
CPU time Solution Global 

Ex. No SB Alt.1 Alt.2 Alt.3 Alt.4a Alt.4b Alt.4c Quality[%] Optimum

2_1 766.4 294.6 257.7 482.1 113.9 74.6 39.0 109 46742

2_2 3834.4 1083.8 1881.5 497.6 294.8 1628.2 153.7 106 68383

2_3 64875.2 27286.7 1665.6 336.4 1172.4 816.4 911.2 109 43330

2_4 1472.7 1357.2 2129.5 232.0 689.6 3439.4 156.7 107 63425

2_5 14074.5 2119.4 2366.0 3763.9 2895.2 6459.4 1054.3 108 67047

2_6 12517.1 19549.5 15366.8 6104.7 1919.8 35257.3 2515.5 103 49569

2_7 6379.7 4492.4 4089.0 2918.1 1932.9 6217.8 5841.6 101 93604
2_8 6311.0 3716.4 1642.2 100.8 119.1 328.1 198.0 102 54876
2_9 2.6 4.0 6.1 2.8 2.8 4.5 2.7 111 13068

2_10 8110.5 5724.8 2402.2 13396.2 3259.2 3803.6 2716.1 102 123585

Median 6345.35 2917.87 2005.48 489.885 931 2533.8 554.6  
 

Since no area cost is used in the single-floor problems, 
no discretisation of the plant area is needed and the global 
optimum of the examples is reached in every run. This is 
seen in figure 9 where all performance profiles reach a 
solution quality of 100%. The solution quality shown as a 
percentage of the global optimum is also shown in table4. 
The relatively smooth curves for SB constraint alternatives 
4a, 4b and 4c seen in figure 9 indicate that the considered 
SB constraints work well on all the single-floor problems. 
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Figure 9. Performance charts for examples SF_1 –SF_10 

 
 
 

 
Table 4. Solution data for examples SF_1- SF_10 

CPU time Solution Global 

Ex. No SB Alt.1 Alt.2 Alt.3 Alt.4a Alt.4b Alt.4c Quality[%] Optimum

SF_1 11.4 5.8 5.3 733.0 3.0 4.2 6.8 100 9948.0

SF_2 31.1 22.8 27.5 9.9 20.1 21.1 6.9 100 11740
SF_3 119.8 73.4 50.1 13.6 4.1 17.9 20.5 100 5264
SF_4 9.9 4.8 15.3 64.7 6.8 13.7 6.0 100 13465

SF_5 63.2 26.6 84.5 56.2 38.1 29.1 16.5 100 11774

SF_6 194.0 41.4 38.3 966.7 59.6 64.9 17.7 100 8716

SF_7 50.0 3192.3 682.9 19.3 21.5 24.1 89.3 100 16769

SF_8 14.9 11.9 14.1 124.1 156.3 16.4 19.3 100 10049

SF_9 2.6 4.2 9.6 1.8 3.1 3.0 5.0 100 2074

SF_10 105.2 24.7 154.6 58.3 9.9 17.1 9.2 100 23953

Median 40.5 23.8 32.9 57.2 15.0 17.5 12.8  
 

 The median CPU time shown in the last row of tables 
1, 2, 3 and 4 is intended to complement the performance 
profiles in evaluating the performance of the SB 
constraints, giving each SB alternative an average 
performance indicator. 

 
Conclusions 

 

Symmetry breaking is an effective way of reducing 
computational efforts required to solve different kind of 
layout problems. The benefit of incorporating symmetry-
breaking constraints within existing mathematical 
formulations for process plant layout has been illustrated 
through three different problem sets. 
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