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Abstract
In this work, we address the rigorous and efficient determination of the global solution of a nonconvex
MINLP problem arising from product portfolio optimization introduced by Kallrath (2003). The goal
of the optimization problem is to determine the optimal number and capacity of reactors satisfying the
demand and leading to a minimal total cost. Based on the model developed by Kallrath (2003), an
improved formulation is proposed, which consists of a concave objective function and linear constraints
with binary and continuous variables. A variety of techniques are developed to tighten the model and
accelerate the convergence to the optimal solution. A customized branch and bound approach that exploits
the special mathematical structure is proposed to solve the model to global optimality. Computational
results for two case studies are presented. In both case studies, the global solutions are obtained and
proved optimal very efficiently in contrast to available commercial MINLP solvers.
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Introduction

The modeling of decision making in many processes, such
as the design of chemical plants, often leads to nonconvex
mixed-integer nonlinear programming (MINLP) problems.
The solution of this class of problems is very challenging
due to the presence of both the integer variables and the
nonconvexities. A number of approaches have been pro-
posed for the solution of such problems within the branch
and bound framework. For example, Adjiman et al. (2000)
introduced a powerful theoretical and algorithmic frame-
work based on the �BB global optimization approach for
twice-differentiable nonlinear programming (NLP) prob-
lems (Adjiman et al., 1998). Adjiman et al. (2000) de-
veloped two broadly applicable algorithms for the solution
of nonconvex MINLPs: a special structure mixed-integer
�BB algorithm (SMIN-�BB) for problems with general
nonconvexities in the continuous variables and restricted
participation of the binary variables, and a general struc-
ture mixed-integer �BB algorithm (GMIN-�BB) for the
broader class of problems whose continuous relaxations are
twice-differentiable. Westerlund et al. (1998) proposed a
new theoretical and algorithmic approach, the extended cut-
ting plane algorithm, for addressing problems with pseudo-
convex functions. Ryoo and Sahinidis (1996) developed a
standard branch-and-reduce algorithm, in which they intro-

duced domain reduction through feasibility and optimality
tests. Smith and Pantelides (1999) introduced a reformula-
tion/spatial branch-and-bound algorithm for mathematical
models that feature factorable continuous functions and bi-
nary variables. For a comprehensive discussion of the theo-
retical, algorithmic, and application related issues for global
optimization problems that include mixed-integer nonlin-
ear optimization models, interested readers are referred to
(Horst and Tuy, 1996) and (Floudas, 2000).

In this work, we address the global solution of a non-
convex mixed-integer nonlinear programming (MINLP)
problem arising from product portfolio optimization. The
problem and related data are taken from (Kallrath, 2003).
This nonlinear nonconvex portfolio optimization problem
contains a design problem (determining the number and
sizes of chemical reactors) coupled with an assignment
problem (assigning products to reactors). The solution de-
fines the optimal production configuration, and, in a second
step, will also help to perform product portfolio analy-
sis. Kallrath (2003) developed a nonconvex MINLP model
featuring concave terms in the objective function and trilin-
ear products in the constraints. Kallrath (2003) addressed
the problem using (i) a mixed-integer linear programming
(MILP) representation with equivalent linear constraints
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and an approximate objective function; and (ii) some stan-
dard commercial solvers, such as SBB and BARON, which
required a lot of computational time, especially for the large
case study for which optimal solutions could not be found
within many CPU hours (Kallrath, 2003). In this paper, we
present a customized branch and bound approach based on
the construction of a lower bounding problem by under-
estimating the concave objective function with piece-wise
linear approximations aiming to solve the problem to global
optimality efficiently.

Problem Description
Taken from (Kallrath, 2003), the portfolio optimization

problem of interest is as follows. A business unit operating
a number of batch reactors wants to analyze the dependence
of investment and fixed costs on given demand spectra. In
this paper we analyze two different scenarios: one includes
a relatively large number of products (i.e., about 40 prod-
ucts) and the other involves a ”lean assortment” with fewer
products (i.e., about 20 products).

The analysis should determine cost minimal solutions.
In addition to the costs, the following detailed results are
expected: i) the number of reactors required and the num-
ber of batches per reactor; ii) the volumes of the reactors;
iii)which batches are produced on a certain reactor; iv) the
utilization rates of the reactors; and v) surplus production
with respect to the demand.

The production configuration is subject to the following
constraints. i) The demand for 20 and 40 products, speci-
fied per week and per product, needs to be satisfied. ii) All
products are subject to shelflife limits. Actually, the prod-
ucts can be stored for about one week; if they are probably
cooled they can survive a few more days. iii) All products
are produced in batches of 6 hours. iv) The feasible volumes
of the reactors are in the range between 20 and 250 m�. v)
The filling degree or utilization rate needs to be at least 40%.

For each reactor, the fixed cost and the investment cost
are known. The investments cost is given by a nonlinear
concave functions which relate the cost to the volume of the
reactor. It is sufficient to consider investment costs which
are qualitatively correct. The most important structural
feature is that the investment–cost-versus-reactor–volume
function is concave.

Mathematical Model
Based on the model in (Kallrath, 2003), an improved

mathematical formulation is developed as follows.

Basic Formulation
First, we define the following notation.

Indices and sets:
p � P products; r � R reactors.

Parameters:
CF
r [kEuro/week] fixed cost of reactor r.

CI
r [kEuro] investment or depreciation cost per m� for

reactor r per week.
CT
r [hours] time capacity of reactor r.
TPp [hours] time required to produce one batch of

product p.
Dp [m�] demand for product p per week.
S surplus production allowed relative to the demand.

V L
r � V

U
r [m�] lower and upper limits on the reactor

volume if reactor r is active.
F �UL

r � [m�] lower limit on the utilization rates.
We introduce the following variables:
�r binary variable, selection of reactor r.
vr [m�] reactor volume of reactor r.
nrp number of batches for product p in reactor r.
prp [m�] production of product p in reactor r.
Based on this notation, the objective function and the

constraints are formulated as follows:
Reactor volume bounds

V
L
r � �r � vr � V

U
r � �r� �r � R (1)

Production limits

nrp � vr � F � prp � nrp � vr� �r � R� p � P (2)

Demand fulfillment

Dp �
X

r�R

prp � �� � S�Dp� �p � P (3)

Reactor time
X

p

nrp � T
P
p � C

T
r � �r� �r � R (4)

Objective function: minimization of all costs

Min c
T ��
X

r�R

C
F
r � �r �

X

r�R

p
CI
r � vr (5)

The total cost consists of a fixed part and a variable part
which depends nonlinearly on the volume of the reactors.

The following additional constraints proposed in (Kall-
rath, 2003) to improve the model are also included.
Breaking the symmetry of reactors

vr � vr�� �r � R� r �� N
R (6)

Total reactor volume requirement

��
X

r�R

vr �
X

p�P

Dp (7)

Linear Transformation
Each integer variable nrp can be represented by a set of

binary variables as follows.

nrp �
X

d�D

n
B
rpd � �

d (8)

where d � D is the d-th digit of a binary number and nBrpd
is a binary variable that determines the value of the d-th digit
of the binary representation of nrp.

Constraints (2) consist of bilinear products between an
integer variable and a continuous variable (i.e., nrp � vr).
The integer variables can be replaced by its binary represen-
tation (8), which leads to bilinear products between a binary
variable and a continuous variable, nBrpd � vr. To transform
the bilinear terms to a linear form, we introduce a set of
auxiliary continuous variables, xrpd, to replace the bilinear
terms, and a set of additional linear constraints as follows
(Floudas, 1995).

vr � v
U
r ��� n

B
rpd� � xrpd � vr � v

L
r ��� n

B
rpd�

v
L
r � n

B
rpd � xrpd � v

U
r � n

B
rpd �r � R� p � P (9)



Further Tightening of the Model
It is found that restricting the number of batches for each

product in all of the reactors and/or in each reactor in a rea-
sonably tight range, as represented by the following con-
straints, can tighten the model significantly.

N
L
p �
X

r�R

X

d�D

n
B
rpd � �

d
� N

U
p � �p � P (10)

N
L
rp �
X

d�D

n
B
rpd � �

d
� N

U
rp� p � P� r � R (11)

where NL
p , NU

p , NL
rp, and NU

rp are the lower and upper
bounds on the number of batches for product p in all reac-
tors and in reactor r, respectively.

Furthermore, we eliminate the solution degeneracy re-
sulted from products with the same demand amount. As-
sume that products p and p� have the same amount of de-
mand and p precedes p� in set P , and there are three reactors,
then the following constraints are introduced.

nr��p��
�
� nr��p�� � nr��p � nr��p

���
�
� nr��p

��� � nr��p
� (12)

Lower-Bounding Problem and Branch & Bound Framework
It should be pointed out that the mathematical formula-

tion described above leads to a nonconvex MINLP problem
with the following characteristics: i) the objective function
consists of univariate concave terms and a constant term;
and ii) all the constraints are linear.

A lower bounding problem can be constructed by under-
estimating the concave objective function with piecewise
linear approximations (for details, see (Floudas, 1995)),
which leads to a mixed integer linear programming (MILP)
problem that can be solved efficiently. A branch and bound
framework can then be used to solve for the global solution
of the problem, which relies on the convergence between the
lower bounds obtained by solving the lower bounding MILP
problem and the upper bounds which are feasible solutions
of the original MINLP problem (for more details of the
branch and bound framework, see (Floudas, 2000)). Note
that the constraints remain the same in the lower bounding
problem and therefore any feasible solution obtained from
the lower bounding problem is also a feasible solution of
the original problem and the value of the objective function
of the original problem, which can be obtained by simple
function evaluation, provides a valid upper bound.

Computational Results of Specific Case Studies
Two different sets of demand data, taken from (Kallrath,

2003), are studied in this work, as shown in Table 1 and Ta-
ble 2 respectively. The mathematical models in this work
are formulated and solved with GAMS/CPLEX 7.0.

A Small Case Study
Two reactors are introduced and note that the bounds of

the reactor volumes can be tightened based on the total de-
mand and the time capacity. A total volume of 9860/28 =
352.14 m� is required, that is, v� � v� � ������. Because
v� � ���, v� � ������; because v� � v�, v� � �	
��	.
Based on the tightened ranges of reactor volumes and the
product demands, lower and upper bounds on the number
of batches for each product can be derived. The concave
terms in the objective function are underestimated with 4-
piece and 2-piece linear approximations. The branch and

bound process requires only one iteration to solve the prob-
lem to global optimality with a 0.05% gap (i.e., the gap be-
tween the upper bound and the lower bound at the root node
of the branch and bound tree is within the stopping criterion
and hence the search procedure can be terminated right af-
ter solving the root node). The MILP lower bounding prob-
lem consists of 69 binary variables, 124 continuous vari-
ables and 489 equations. The solution requires 1721 CPU s
on an HP J-2240 workstation. The optimal solution is pro-
vided in Table 1 and the corresponding minimal total cost is
cT � �����.

A Large Case Study

Three reactors are introduced and the bounds of the re-
actor volumes can be tightened to: �� � v� � ��� ���� �
v� � ���� ������ � v� � ���. The range of the number of
batches for each product can be derived based on the order-
ing of product demands. The concave terms in the objective
function are underestimated with 1-piece, 4-piece and 2-
piece linear approximations. The branch and bound process
requires again only one iteration to solve the problem to
global optimality with 0 gap. The MILP lower bounding
problem consists of 124 binary variables, 263 continuous
variables and 984 equations. The solution requires 741
CPU s on an HP J-2240 workstation. The optimal solution
is presented in Table 2 and the corresponding minimal total
cost is cT � �	��	
.

Conclusions
In this work, we address the global solution of a non-

convex MINLP problem arising from product portfolio op-
timization introduced by Kallrath (2003). The goal of the
product portfolio analysis is to prove that complex portfo-
lios lead to more costly scenarios caused by the requirement
of more reactors. In order to do so we have formulated and
solved optimization models to determine the optimal config-
urations of reactors with the minimal fixed and investment
costs for two different scenarios of product demands. The
model proposed by Kallrath (2003) is improved and the
resulting mathematical formulation consists of a concave
objective function and linear constraints with binary and
continuous variables. A variety of techniques are developed
to tighten the model and accelerate the convergence to the
optimal solution. A customized branch and bound approach
is proposed to solve the model to global optimality. Com-
putational studies on the two scenarios are presented. In
both cases, the global solutions are obtained and proved
optimal very efficiently (i.e., essentially in one iteration),
which demonstrate the effectiveness of the proposed ap-
proach. The reactor design problem in this work features
concave cost functions and involves a relative small number
of decision variables. Nevertheless, the important ideas and
techniques underlying the modeling and solution approach
we have presented here, such as the tightening of bounds
and customization of the branch and bound procedure, can
be extended to solve more complex real-world problems.

Acknowledgment
The authors gratefully acknowledge financial support

from the National Science Foundation.



References
Adjiman, C. S., Androulakis, I. P., and Floudas, C. A. (2000).

Global Optimization of Mixed-Integer Nonlinear Problems.
AICHE J., 46, 1769–1797.

Adjiman, C. S., Dallwig, S., Floudas, C. A., and Neumaier, A.
(1998). A Global Optimization Method, �BB, for General
Twice-differentiable Constrained NLPs – I. Theoretical Ad-
vances. Computers and Chemical Engineering, 22, 1137–
1158.

Floudas, C. A. (1995). Nonlinear and Mixed-Integer Optimization,
Oxford University Press.

Floudas, C. A. (2000). Deterministic Global Optimization: The-
ory, Methods and Applications, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands.

Horst, R. and Tuy, H. (1996). Global Optimization: Deterministic
Approaches, 3rd ed., Springer–Verlag, Berlin.

Kallrath, J. (2003). Exact Computation of Global Minima of a
Nonconvex Portfolio Optimization Problem. In Floudas, C.
A. and Pardalos P. M. (eds.), Frontiers in Global Optimiza-
tion, Kluwer Academic Publishers.

Ryoo, H. S. and Sahinidis, N. V. (1996). A Branch-and-Reduce
Approach to Global Optimization. J. Global Optimization,
8, 107–138.

Smith, E. M. B. and Pantelides, C. C. (1999). A Symbolic Re-
formulation/Spatial Branch-and-Bound Algorithm for the
Global Optimization of Nonconvex MINLPs. Computers
and Chemical Engineering, 23, 457–478.

Westerlund, T., Skrifvars, H., Harjunkoski, I., and P�orn, R. (1998).
An Extended Cutting Plane Method for a Class of Non-
Convex MINLP Problems. Computers and Chemical Engi-
neering, 22, 357–365.

Table 1. Product demand and the optimal solution for the small case study
Product Demand Reactor 1: v� = 132.5 m� Reactor 2: v� = 250 m�

m
�/week production batches utilization rate production of batches utilization rate

L1 2,600 100 1 0.76 2,500 10 1
L2 2,300 1050 8 0.99 1,250 5 1
L3 1,700 0 0 - 1,700 7 0.97
L4 530 530 4 1 0 0 -
L5 530 530 4 1 0 0 -
L6 280 53 1 0.40 250 1 1
L7 250 0 0 - 250 1 1
L8 230 0 0 - 230 1 0.92
L9 160 0 0 - 160 1 0.64
L10 90 90 1 0.68 0 0 -
L11 70 70 1 0.53 0 0 -
L12 390 390 3 0.98 0 0 -
L13 250 0 0 - 250 1 1
L14 160 0 0 - 160 1 0.64
L15 100 100 1 0.76 0 0 -
L16 70 70 1 0.53 0 0 -
L17 50 100 1 0.76 0 0 -
L18 50 100 1 0.76 0 0 -
L19 50 100 1 0.76 0 0 -
Total 9,860 3,283 28 6,750 28

Total production: 10,033

Table 2. Product demand and the optimal solution for the large case study
Product Demand Reactor 1: v� = 20 m� Reactor 2: v� = 100 m� Reactor 3: v� = 250 m�

m
�/week production batches utilization rate production batches utilization rate production batches utilization rate

L1 2,600 0 0 - 100 1 1 2500 10 1
L2 2,300 0 0 - 50 1 0.50 2250 9 1
L3 450 0 0 - 200 2 1 250 1 1
L4 1,200 0 0 - 200 2 1 1000 4 1
L5 560 0 0 - 100 1 1 460 2 0.92
L6 530 0 0 - 300 3 1 230 1 0.92
L7 530 0 0 - 300 3 1 230 1 0.92
L8 140 0 0 - 140 2 0.70 0 0 -
L9 110 20 1 1 90 1 0.90 0 0 -
L10 110 20 1 1 90 1 0.90 0 0 -
L11 10 20 1 1 0 0 - 0 0 -
L12 110 20 1 1 90 1 0.90 0 0 -
L13 90 0 0 - 90 1 0.90 0 0 -
L14 90 0 0 - 90 1 0.90 0 0 -
L15 90 0 0 - 90 1 0.90 0 0 -
L16 70 0 0 - 70 1 0.70 0 0 -
L17 50 50 3 0.83 0 0 - 0 0 -
L18 30 30 2 0.75 0 0 - 0 0 -
L19 10 20 1 1 0 0 - 0 0 -
L20 10 20 1 1 0 0 - 0 0 -
L21 10 20 1 1 0 0 - 0 0 -
L22 190 0 0 - 190 2 0.95 0 0 -
L23 180 0 0 - 180 2 0.90 0 0 -
L24 70 0 0 - 70 1 0.70 0 0 -
L25 70 0 0 - 70 1 0.70 0 0 -
L26 40 40 2 1 0 0 - 0 0 -
L27 40 40 2 1 0 0 - 0 0 -
L28 40 40 2 1 0 0 - 0 0 -
L29 30 30 2 0.75 0 0 - 0 0 -
L30 20 20 1 1 0 0 - 0 0 -
L31 20 20 1 1 0 0 - 0 0 -
L32 20 20 1 1 0 0 - 0 0 -
L33 10 20 1 1 0 0 - 0 0 -
L34 10 20 1 1 0 0 - 0 0 -
L35 10 20 1 1 0 0 - 0 0 -
L36 10 20 1 1 0 0 - 0 0 -
L37 10 20 1 1 0 0 - 0 0 -
Total 9,870 530 28 2,510 28 6,920 28

Total production: 9,960
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