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Abstract 

This paper considers the problem of designing a plant according to its operational constraints. A 
uniform time grid, continuous-time formulation is proposed that considers the design and scheduling 
aspects simultaneously. Under the condition of linear task durations and equipment cost, the Resource 
Task Network (RTN) based formulation gives rise to Mixed Integer Linear Programs (MILPs) for total 
cost minimization. Its performance is illustrated through the solution of two batch-plant example 
problems taken from the literature and compared to the design and scheduling, non-uniform time grid, 
State Task Network (STN) based continuous-time formulation of Lin and Floudas (2001). 
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Introduction

Multipurpose plants are general purpose facilities where a 
variety of products can be produced by sharing the 
available plant resources (raw materials, equipment, 
utilities and manpower) properly in time. The production 
of a particular product involves a sequence of operations 
that can be batch, semi-continuous or continuous in nature, 
where an equipment unit is usually suitable for more than 
a single operation. As a result, multipurpose plants are 
more flexible and more suitable for the production of 
small quantities of high value-added products with short 
life cycles, the current trend of consumer’s demands in 
this competitive global market. However, these same 
special characteristics introduce extra degrees of 
complexity into the design and operation of such plants. In 
particular, it is not possible to design a plant without 
considering how it will be operated, neither it is possible 
to schedule all the required operations without knowing 
the plant configuration. Hence, design and scheduling 
must be considered simultaneously to avoid over or under 
design. 

Mathematical formulations for design and scheduling 
problems can be classified in two groups based on the time 

representation. An example of a discrete-time formulation 
is the work of Barbosa-Póvoa and Macchietto (1994), 
while the formulation of Lin and Floudas (2001) is an 
example of a recent continuous-time formulation. Both are 
based on the State Task Network process representation.  

This paper extends the work of Castro et al. (2004) by 
considering design and scheduling aspects simultaneously. 
Due to the lack of space, focus is set on the solution of 
short-term problems involving batch plants, although it 
can be easily adapted to periodic problems involving both 
batch and continuous operations. 

Fundamental Concepts 

In the proposed formulation, the time horizon (H) is 
divided into a fixed number of time intervals. The interval 
boundaries are called event points (set T) and their exact 
location ( ) is unknown a priori. A single time grid keeps 
track of all events taking place (uniform time grid). The 
formulation of Lin and Floudas (2001) uses a different 
time grid for each equipment resource. Non-uniform time 
grids have the advantage of requiring fewer event points to 

tT

 
   



 

model a particular problem and the disadvantage of 
requiring more complicated material balances and storage 
constraints. 

The quality of the solution returned depends greatly 
on the number of event points considered (|T|). For MILP 
models, the returned solution is a global optimum solution 
only if the pre-specified number of |T| is sufficient and 
does not act as a hidden constraint. The search for the 
global optimum (or the best possible solution, if the 
problem becomes intractable) usually involves solving the 
problem for different values of |T| in succession until no 
increment is found in the objective function. 

To account for the fact that the majority of process 
tasks does not span across the whole time horizon, the 
maximum number of event points allowed between the 
beginning and end of a task is defined through parameter 

. Like before, the use of an exceedingly small value of 
 works also as a hidden model constraint so a similar 

procedure to that of |T| should be used. 
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One important breakthrough in continuous-time 
formulations in recent years came from allowing materials 
to reside in the equipment unit that produces them past 
their processing time. This added time has been called 
inherent waiting period or buffer time and can be allowed 
for tasks not producing unstable materials. For tasks 
producing materials subject to zero-wait policies (IZW), an 
additional set of constraints is used. 

Concerning the process representation used, the RTN 
regards all processes as bipartite graphs comprising two 
types of nodes: resources (set R) and tasks (set I), the latter 
being operations that transform a certain set of resources 
into another set. Two variables are used to characterize the 
instance of task i starting at event point t and ending at t’. 
The binary variable ',, ttiN  identifies the occurrence of the 

task, while the nonnegative continuous variable ',, ttiξ  

gives the total amount of material processed between t and 
t’. The other required variables, which are all nonnegative, 
are the excess resource variables , and the initial 

amounts , which for equipment resources become the 

existence variables ( , and through Eqs. 7 and 9, 

). 
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The task processing time is assumed to be given by a 
constant ( ) plus a term proportional to the amount of 

material being processed ( ), whereas the amounts of 
each resource consumed/produced at the start/end of a task 
are assumed to be proportional to the binary ( /
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and/or continuous ( /ir ,ν ir ,ν ) extents of the task. The 

former parameters are usually linked with equipment 
resources, while the latter are typically linked with 
material resources. The other required parameter ( ) is 
used to allow the amount processed by task i to be lower 
than the minimum design capacity of the equipment. 
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To better understand the model constraints note that a 
1:1 correspondence is assumed between tasks and 
equipment resources, so if a particular task can be 
performed in more than one equipment, one task will need 
to be defined for each unit. 
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Mathematical Formulation 
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The objective function considered (Eq. 10) minimizes 
the capital cost of units, which consists of a fixed term 
( rα~ ) plus a term ( rβ

~
) proportional to the size of the unit 

( ), minus profits due to product sales. Other 
performance criteria can also be incorporated. 
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Case Studies 

Two examples taken from Lin and Floudas (2001), 
BMFIX and KPSLIN, were chosen to illustrate the 
capabilities of the proposed formulation. 



 

In the first example (BMFIX), two valuable products 
(S5 and S6) are to be produced from two raw-materials 
(S1 and S2). Three main equipment units (U1a, U1b and 
U2) and one storage vessel (V4) can be used for that 
purpose. The RTN representation of the process is given in 
Figure 1, while the other required data is given in Table 1. 

The second example is more complex and features 4 
possible main equipment units (Heater, Reactor1, 
Reactor2, Still) and four possible storage vessels (V4-V7). 
The RTN representation of the process is given in Figure 
4, while the data is shown in Table 2. 
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Figure 1. RTN representation for BMFIX 

Table 1. Problem data for BMFIX 

Resource min
rV /  max

rV rα~ / rβ
~

 rp  ||, TrR  

U1a,U1b 50/150 20/0.5 - - 
U2 50/200 30/1 - - 
V4 10/100 1/0.1 - - 
S5 - - 0.04 80 
S6 - - 0.015 80 

Table 2. Problem data for KPSLIN 

Results 

The above mathematical formulation gives rise to 
Mixed Integer Linear Problems that were solved to 

optimality by GAMS/CPLEX 8.1 on a Pentium IV-2.53 
GHz machine. The two example problems were solved for 
three different scenarios: A) all materials subject to ZW 
and exact demands for the final products (the one 
considered by Lin and Floudas, 2001); B) no ZW and 
fixed demands; C) ZW with minimum instead of fixed 
demands. 
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Figure 2. Optimal solution for BMFIX, C 
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Figure 3. Best solution found for KPSLIN, C 

The computational statistics are given in Table 3. All 
three scenarios of BMFIX are solved rather rapidly and 
the reported solutions are global optimal solutions. The 
optimal solution for scenario C is given in Figure 2, where 
it can be seen that the capacities of equipments U1a and 
U1b are their predefined minimum capacities (50). If these 
values were lower, both capacities would be equal to 48. 
The optimal schedule is quite similar to that of scenario A 
with the only difference being that more material is 
processed in the first three tasks of the schedule, thus 
leading to the production of 128 units of S5 instead of 80. 
The installed capacities are the same in all scenarios. 

Resource min
rV /  max

rV rα~ / rβ
~

 rp  ||, TrR  

Heater 20/50 100/0.2 - - 
Reactor1 50/70 150/0.5 - - 
Reactor2 70/70 120/0 - - 
Still 50/80 150/0.3 - - 
V4 10/30 30/0.1 - - 
V5 10/60 15/0.1 - - 
V6 10/70 10/0.1 - - 
V7 50/100 20/0.2 - - 
P1 - - 0.02 40 
P2 - - 0.03 60 

The second example, KPSLIN, is much harder to 
solve. Due to problem tractability, the global optimal 
solution can only be achieved for scenario B. The 
additional constraint of ZW policies has the effect of 



 

causing more event points to be used to get to the same 
solution. In fact, for scenario A, the solution for 10 event 
points is slightly worse (the capacity of the heater is equal 
to 20.416 instead of 20) than that of scenario B (7 event 
points). In scenario C (see Figure 3) a better solution is 
achieved due to the additional production of more 7.5 
units of P2 and to the lower capacity of V6 (10 instead of 
13.33). 

In terms of computational performance, our 
formulation can only match that of the non-uniform time 
grid formulation of Lin and Floudas (2001) if the 
condition of ZW is dropped. Otherwise, the results for 
scenario A clearly show that more event points are 
required to get to the same solutions (for KPSLIN the 
difference between scenario B and L&F’s scenario A is 
due to slightly different data, i.e. rounding errors, since the 
installed capacities are the same). Since a single increase 
in the number of event points has typically a 1 order of 
magnitude effect on computational performance this can 
quickly become a major inconvenience. 

Conclusions 

This paper presents a new RTN-based continuous-
time formulation for the simultaneous design and 
scheduling of multipurpose plants. The efficiency of the 
proposed formulation was tested through the solution of 
two example problems taken from the literature for three 
different scenarios involving (or not) ZW policies and 

fixed or minimum product demands. The results obtained 
showed that our formulation performs similarly to that of 
Lin and Floudas (2001) only when the materials are not 
subject to ZW policies. When they are, our uniform time 
grid formulation may require a few more event points than 
that of Lin and Floudas (2001) to get to the same 
solutions, which is translated into a poorer performance. 

Future work should include the development of a 
RTN-based non-uniform time grid formulation that would 
lead to a better computational performance and hence 
allow the solution of larger problems. In addition, and 
since the design of the plant is a long term decision, the 
more stable, periodic mode of operation should be 
preferred over the short-term mode. 
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Figure 4. RTN representation for KPSLIN 

Table 3. Computational statistics (H=12 h, t∆ =2, *HP-C160 workstation) 

Example BMFIX KPSLIN 
Authors L&F This paper L&F This paper 
Scenario A A B C A A B C 
|T| 5 6 5 6 6 10 7 10 
Integer variables 59 43 30 43 128 134 74 134 
Continuous variables 175 163 126 163 341 468 294 468 
Constraints 332 240 164 240 877 710 395 710 
Obj. relaxed MILP - 59.81 90.3 47.71 - 103.8 182.98 99.656 
Obj. MILP 195.6 195.6 195.6 193.7 572.9 572.82 572.73 572.26 
CPUs 0.4* 0.38 0.19 0.30 22.5* 2954 9.3 11185 
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