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Abstract 

Two streams of literature exist in the area of pharmaceutical R&D portfolio management: The Strategic 
literature that focuses on higher level decisions such as project selection, prioritization, in-licensing, 
capital budgeting and the Tactical literature that focuses on operational decisions such as dynamic 
resource allocation between competing project activities and detailed activity scheduling. This "split" is 
unfortunate since strategic decisions tend to exert strong influences on tactical decisions. Our work 
attempts to bridge the strategic-tactical divide by modeling major decision and policy classes into a 
multi-hierarchical framework. This framework is composed of three layers of inter-connected 
optimization components. Each component is driven by suitable algorithms based on its addressed class 
of decisions. For example, the project selection and prioritization component is driven by the 
combination of a genetic algorithm and discrete event simulation while the project release time 
optimizing component is driven by a modified simulated annealing algorithm. The hierarchical 
architecture is computationally efficient in that it is shown to harness problem structure for pruning the 
search space of multiple decision classes and allows scalability, inherent parallelism and extensibility to 
accommodate portfolio planning problems in a wide range of sizes and structures. Appropriate 
computational case studies are described to demonstrate the utility of this framework to integrated 
portfolio management. 

Keywords 

Project Release Times, Multi-modal Project Scheduling, Simulated Annealing, Genetic Algorithm, Risk, 
Net Present Value, Lead Time. 

Introduction

Commercial development of pharmaceutical new drug 
products involves managing a portfolio of multiple inter-
dependent projects under conditions of manpower, 
equipment and capital constraints in an environment 
riddled with uncertainties in activity processing durations, 
resource requirements and product success in clinical trials 
and in the market. The management of such a portfolio 
involves decision-making at both strategic and tactical 
levels. Strategic decisions include selection of drug 
candidates to be developed from a host of available 
candidates, prioritization or sequencing of the selected 
candidates and portfolio investment planning (Pol et al, 
2001, Blau et al, 2003). Tactical decisions include 

dynamic allocation of constrained resources between 
contending activities of multiple projects and detailed 
scheduling (Adler et al, 1995). While management 
scientists have traditionally focused on strategic aspects 
using economic and decision theories, operational 
researchers have concentrated their efforts on tactical or 
operational aspects with objectives such as reducing time 
to market. This “split” in efforts is unfortunate and may 
result in un-coordinated and counter-productive efforts 
towards achieving such common goals as maximizing 
economic value, reducing economic risk and product 
development times. Additionally, the prevalence of project 
dependencies complicates any attempt towards efficient 



   
 
portfolio decision-making. This work is an attempt at 
bridging this strategic-tactical divide. The rest of the paper 
is structured as follows: A Bio-pharmaceutical Integrated 
Strategic and Tactical Planning (BISTAP) framework is 
proposed and key modeling and computational complexity 
issues of its components are discussed along with a few 
computational studies. The paper concludes with an 
overview of the ongoing work on this framework.  

The BISTAP Computational Framework   

The BISTAP framework is motivated by a persistent 
demand from drug development businesses for software 
systems that can jointly optimize the large number of 
portfolio management decisions, given the limited 
computational resources. For example, current practices in 
most pharmaceutical firms call for approval of most drugs 
identified as promising by individual research teams. Such 
practices discourage preemption of product development 
and encourage under-resourcing of development for 
certain low priority drugs in the event of an excessively 
large portfolio. The inherent intuition behind such 
strategies is to allow as many drugs to develop in view of 
potential product failures. Several untested but promising 
alternative operational strategies exist. For instance, the 
release of projects could be staggered across several 
quarters instead of releasing a project as soon as it is 
approved. Projects could be preempted if the large 
portfolio size starts to overwhelm resources. Nevertheless, 
while project preemptions and delayed project releases 
tend to favor product lead times they also tend to increase 
the portfolio risk by impeding the pipeline’s ability to 
overcome project failures (Figure 1). Besides, even under 
conditions of staggered or delayed project releases and 
project preemptions, certain activities can be under or 
over-resourced leading to alterations of expected 
durations. Additionally, set up times in re-starting projects 
can be as long as six months (for typical experimental 
teams) which calls into question the value of project 
preemptions.  

 
 
 
 
 
 
 

 

Figure 1.   An Influence Diagram showing the 
Interaction of Project Release/Loading and 

Scheduling Policies 

The BISTAP system provides a problem 
decomposition based solution towards jointly optimizing 
these decisions. Figure 2 shows the “core” of the BISTAP 
system. It is primarily composed of three blocks: a 
strategic planning optimizer geared towards portfolio risk 

management in the context of decisions such as project 
selection, release time and higher-level project 
prioritization. The second block is called as tactical 
optimizer, geared towards optimizing measures of product 
development lead times given the output from the strategic 
optimizer. The tactical optimizer determines efficient 
dynamic resource allocation and detailed activity 
scheduling policies for the given portfolio of prioritized 
drugs. Finally, there is a capacity planning block called the 
capacity optimizer which evaluates the queuing and other 
dynamic characteristics for the given portfolio and 
associated policies. Based on a combination of simulation 
and mathematical programming the capacity optimizer 
recommends a dynamic capacity expansion/reduction 
policy. It also recommends if re-iteration through the three 
blocks needs to be undertaken.  
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Figure 2: The BISTAP Framework 

The Strategic Optimizer 

The strategic optimizer generates an efficient portfolio 
of projects, a higher-level prioritization of projects and an 
efficient set of project release times (if the user selects 
such an option). If release time optimization is not sought 
then a genetic algorithm procedure is invoked (Blau et al, 
2003). If release time optimization is required then a 
reward-risk heuristic is used to recommend a portfolio and 
project priorities. These are then fed into a Simulated 
Annealing (SA) based project release time optimizer. The 
SA, which is a variant of the Markov Chain Monte Carlo 
(MCMC) procedure, has been implemented as a two-stage 
algorithm. The first stage of this algorithm applies smaller 
sample sizes with the goal of spanning a large search 
space while a search consolidated around the best first 
stage point fine tunes the best project release time point. 
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While our current implementation optimizes over all 
pro-active project release policies (Homem-de-Mello et al, 
1999), future implementations will incorporate reactive 
project release policies in line with the popular CONWIP, 
KANBAN discrete manufacturing order release policies. 
The simulation replications included in all algorithms of 
the strategic optimizer are driven by higher level planning 
integer programs instead of detailed scheduling programs. 



  
 

20
39
57
79
101
111
133
224
263

Table 1: Sample Output of Project Release Time-
Preemptive Scheduling Bi-level Optimization 

This forms the basis of the decomposition-oriented 
paradigm of the BISTAP system in that the strategic 

optimizer’s computational resources are focused towards 
spanning larger strategic decision search spaces while the 
tactical optimizer computational resources are focused 
towards solving harder policy-governing scheduling 
problems. The genetic algorithm that optimizes the 
portfolio level decisions has been optionally endowed with 
the capability to simultaneously optimize pro-active 
resource-duration trade-off decisions. Such an approach 
helps the tactical optimizer in converging to effective 
dynamic resource allocation policies guided by results of 
the pro-active resource-duration trade-off optimization. 

The Tactical Optimizer and Portfolio Search Pruning 

The tactical optimizer outputs efficient resource 
allocation and scheduling policies based on the input 
portfolio, project prioritizations and release schedules. 
Scheduling policies include policies governing response 
actions to events such as project failures, launches and 
achievement of certain portfolio milestones. Typical 
response actions include project preemptions and/or 
resource re-allocation. In our implementation a multi-
period, multi-modal resource-constrained scheduling 
integer program is formulated whenever a significant 
event occurs in the simulated pipeline. The solution of this 
integer program provides the current resource allocations 
to all activities (and hence activity durations) alongside 
with the sequence in which activities need to be executed. 
Additionally, if the best resource allocation policy is 
unable to satisfy the development lead time constraints on 
a particular project, then a “feasibility cut” is sent back to 
the strategic optimizer to prevent it from selecting that 
project in further iterations. This drastically reduces the 
search space of the portfolio optimization GA.  

The strategic and tactical optimizers can be 
interpreted as the outer and inner optimizers of a bi-level 
decision-making problem at constant resource capacities. 
If capacities are perceived to be flexible and controllable 
then the user can invoke the capacity optimizer.    

The Capacity Optimizer 
Project Index

Initial 
Solution 
(weeks)

Stage 
1(weeks)

Stage 2 
(weeks)

1 5 35
2 10 43
3 15 53
4 20 65
5 25 80
6 30 101
7 35 128
8 40 164
9 45 210
10 50 267 301

Mean (z*) $ MM 5081.64 5718.02 5860.5
Std Dev $ MM 1900.692 2115.431 2220.968

Mean Quantile Risk 
= P(NPV<E(NPV)) 0.4837 0.4233 0.448

Probabilistically 
Best Scheduling 

Policy 1 2 2
Probability of 

Optimality 0.52 0.64 0.67
Policy 0 0.29 0.2301 0.1795
Policy 1 0.52 0.1781 0.1876
Policy 2 0.23 0.6438 0.6694
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The capacity optimizer invokes procedures based on 
online analyses of the strategic and tactical optimizer 
results and outputs a capacity re-distribution policy that is 
employed in the next strategic-tactical iteration. Further if 
the probability of resource conflicts due to a certain 
resource mode is exceptionally high, then a “message” is 
sent to the tactical optimizer to prevent it from selecting 
that resource mode for that project. Current 
implementations have employed queuing related heuristics 
for generating a modified capacity policy.  
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Computational Performance on Typical Instances 

The computational performance of individual 
components was established using test instances involving 
three significantly different structures of the underlying 
development network. The component optimizers of the 
framework were tested upon case studies described in 
Blau et al (2003), Subramanian et al (2003) and Varma et 
al (2003). The major results related to the strategic 
optimizer without resource-duration trade-offs and 
dynamic project release times have been described in Blau 
et al (2003).  
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Figure 3.   Sample Output from the Project 
Selection, Sequencing and Pro-active Resource 

Allocation Optimizer 

Figure 3 shows the progressions of two types of 
genetic algorithms employed within the strategic 
optimizer. In this case, the framework was adapted to 
simultaneously optimize project prioritization and pro-
active resource-duration trade-offs. The algorithms were 
parallelized on an RS6000/IBM-SP machine and achieved 
all convergence criteria in about 13 CPU hours. It can be 



   
 
inferred that the genetic algorithm with intermediate local 
search components frequently generates superior 
solutions. For the test instance described in Subramanian 
et al (2003), an ENPV improvement from $ 9012 MM to $ 
15606 MM was realized. This improvement resulted from 
imparting flexibility of resource allocation (resource-
duration trade-offs) to the portfolio and also the ability of 
the GA to identify the most efficient combination of 
project priorities and resource allocations. Table 1 shows a 
sample output from the two-stage Simulated Annealing 
(SA) algorithm run on a large molecule pipeline test 
instance. In this run, the framework was adapted to jointly 
optimize project release times (pro-actively) and 
scheduling policies. A project sequence and a resource-
duration combination were assumed from partial runs of 
the portfolio prioritization genetic algorithm. The 
algorithm evaluates the best set of release times along with 
a probabilistically optimal preemptive scheduling policy.  

The tactical optimizer performs detailed scheduling 
for each of the activities by formulating deterministic 
multi-modal resource constrained project scheduling 
(MRCPSP) integer programs. Before incorporating such 
integer programs into the framework, an algorithmic 
strategy was required to vastly speed up the MILP solution 
times by resorting to reliable and efficient heuristics. 

 

 

 

 

 

Figure 4: Decomposition Scheme for Multi-modal 
Scheduling 

These heuristics were not only required to speed up the 
solution but also to supply information about the solution 
quality. Consequently, a decomposition structure was 

identified wherein the entire set of projects can be 
partitioned into groups based on the resource types 
required by each group. For instance, a group of projects 
may require low volume equipment as compared to other 
groups. The only shared resource types are the personnel 
types. The constraints associated with these resource types 
were dualized and the resulting Lagrangian problem was 
solved using a sub-gradient convex optimization method 
resulting in drastically reduced computational times and 
average duality gaps varying between 8-25 % for problem 
sizes as large as 600 activities. Figure 4 illustrates the 
typical resource-activity matrix responsible for the 
decomposition based algorithm.  

Conclusion and Current Challenges 

The BISTAP architecture is endowed with the 
capabilities to jointly optimize portfolio level strategic and 
project-level tactical decisions either by optimizing these 
decisions sequentially and invoking several iterations of 
this sequence or by adapting the framework to solve a 
multi-level optimization problem. In the former case 
(called the “fully decomposed mode of computation”) the 
main question that arises is how to allocate the 
computational budget across different optimizers in order 
to improve the solution quality in the fewest iterations i.e. 
in order to speed up the convergence in some sense. The 
latter case (e.g. the bi-level release time and preemptive 
scheduling problem described earlier, also called the 
“partially decomposed mode of computation”) involves 
the solution of nested or inner optimization sub-problems 
that address lower level or tactical decisions. 
Consequently, the main question that arises is how much 
computational budget to allocate to these nested 
optimizations in order to execute an efficient trade-off 
between solution qualities of various decisions. These 
issues, in addition to the algorithm engineering issues of 
the individual optimizers constitute the set of challenges 
towards improving the computational efficiency of 
BISTAP.  
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