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Abstract 

In genetic algorithm (GA), there are two main methods of determining trial candidates: crossover and 
mutation. While crossover directs search between fit candidates, mutation plays a role on jumping out 
local optimal. In molecular docking calculations, it is desirable to chart as much unexplored search 
space as possible. Therefore it is desirable that mutation results in a uniform distribution of sampling 
points in solution space. In this work an information entropy based mutation procedure is developed. 
Instead of random mutation, mutation is directed to parts of the solution space that is least populated. 
Such a procedure is implemented in AUTODOCK and used to study the docking of Peroxisome 
Proliferator-Activated Receptors gamma (PPAR-  Results show that the proposed information-based 
genetic algorithm is superior to conventional GA for docking both in speed and precision. 
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With rapid development in genomics, proteomics, 
combinatory chemistry, the technology for fast 
measurement of high-resolution structures of proteins, 
other biological macromolecules and their complexes, 
quantitative structure-activity relationship (QSAR) for 
drug-like molecules, and computing technology of both 
hardware and software, rational drug design (or structure-
based drug design, or drug discovery) has come into 
reality in the last decade. With the success that a number 
of new drugs under clinical tests have been initiated, 
designed and modified with the help of computer, rational 
drug design gives us a new perspective for efficient and 
analytical discovery of drugs.  In a broader sense, rational 
drug design also provides a platform to integrate 
knowledge.  

From the viewpoint of molecular pathology and 
pharmacology, a drug is such a molecule which binds to a 
specific spot called the active site, of a target protein or a 
peptide or other biological macromolecule responsible for 

a disease, to abrupt its functionality causing the disease.  
Before a long list of crucial traits such as ADME/T 
(absorption, distribution, metabolism, and 
excretion/toxicity) is verified for a molecule to be a 
practical drug, a molecule as a possible lead is selected or 
designed chemically according to its geometric and 
chemical complementation with the receptor 
macromolecule.  The infinite possibility of molecules, 
their conformations and complementary geometry and the 
highly nonlinear characteristics of chemical affinity make 
drug discovery an intelligent and extremely complex 
activity, which may exceed the intuition of all the chemists 
and thus be a task of labor and chance.  It is in this aspect 
that a computer exhibits its extraordinary capability.  

As for the design of a lead drug molecule, there are 
two basic iterative jobs: propose a structure and evaluate 
its fitness. While the former is primarily a problem of 
combinatory chemistry, the latter is mathematically a 
question of optimization known as docking.  Since 



Goodford (1985) proposed the seminal method of GRID 
for fast evaluation of affinity energy, a dozen of software 
systems have been developed to address the discovery of 
lead drug molecules (see reviews by Gane and Dean, 2000; 
Neamati and Barchi, Jr., 2002;).  The objective of docking 
is to find the most suitable position at which and the most 
suitable conformation with which the ligand exists with 
respect to the macromolecule.  The suitability or the so-
called fitness is evaluated based the binding energy of the 
ligand with the macromolecule.  Docking constitutes a 
formidable problem of calculation if detailed structures of 
both ligands and macromolecules are considered, not even 
to mention using rigorous models for binding energy.  The 
current practice of docking calculations is using rigid-
body macromolecules and allowing some flexibility in 
ligand molecules.  In a partially flexible ligand, all the 
bond lengths and angles are fiexed, but possible rotations 
around bond are allowed.  For such a ligand, the degrees 
of freedom include (Joseph-McCarthy, 1999; Yang, 2001): 

Even under such simplifications, the solution space is still 
huge enough to challenge nowadays most efficient 
optimization procedures. 

In addition to the huge solution space, the landscape 
of affinity energy is also very rugged with many local 
minima.  Simulated annealing (SA) (Goodsell et al., 1996; 
Morris et al., 1996), genetic algorithm (GA) (Welch et al., 
1996), and various variants of them such as family 
competition evolutionary approach (FCEA) (Yang, 2001) 
etc. have been used to search for best conformation of a 
ligand and its spatial position relative to a receptor.  In the 
open-source code software AutoDock (Version 3.0) 
(Morris et al., 1998), Morris et al. proposed the 
Lamarckian genetic algorithm (LGA) in which 
environmental adaptations of an individual’s phenotype 
are reverse transcribed into its genotype and become 
inheritable traits, with the environmental adaptations 
produced by a local search.  Morris et al. also claimed that 
LGA can handle ligands with more degrees of freedom 
than SA and is more efficient and reliable than both SA 
and a traditional GA.  LGA together with an empirical free 
energy correlation calibrated with known binding 
constants makes AutoDock a successful toolbox for 
docking. 

Our experience with AutoDock shows that it is liable 
to producing local minima.  In GA, there are two main 
methods of determining trial candidates: crossover, and 
mutation. While crossover directs search between fit 
candidates, mutation plays an important role on jumping 
out local optimal.  To overcome this shortcoming, one can 

follow the suggestion of Morris et al. (1998), namely, have 
parallel runs or change the Cauchy distribution parameters 
to have a mutation more biased toward large deviates to 
cover broader solution space.  In this study, however, an 
information entropy based mutation procedure is 
developed. Instead of random mutation, mutation is 
directed to parts of the solution space that is least 
populated.  Such a procedure is implemented in AutoDock 
and used to study the docking of Peroxisome Proliferator-
Activated Receptors gamma (PPAR- .

Problem Description  

For a partially flexible ligand (n rotatory bonds, fixed 
bond lengths and angles) and a rigid receptor, docking can 
be formulated formally as: 
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where, x=coordinates of the mass center of the ligand, 
x R3; q=quaternion for the orientation of the ligand, q R4;

=rotation angles of bonds, Rn; f = fitness function; 
xi,min=lower bound on xi; xi,max=upper bound on xi.

The constraint in (3) is set by structure of the active 
site of the receptor macromolecule, whereas that in (4) is 
for a unit vector of the quaternion.  The fitness function f
is the same as the Equation (2) of Morris et al (1998), 
which stands for the best development in correlating 
binding energy in molecular docking and accounts for the 
free energy change caused by dispersion/repulsion, 
directional hydrogen bonding, Coulombic electrostatic 
potential, unfavorable entropy due to conformational 
restriction, and desolvation.   In AutoDock, the fitness (or 
scoring) function is an approximate free energy: 

solelecHbondVDW GGGGG    (4) 
where, GVDW is Van der Waals potential energy, GHbond

is energy of hydrogen bond, Gelec is electrostatic potential, 
Gtor free energy change of torsion, and Gsol is 

desolvation free energy. 

Information Based Genetic Algorithm 

The information-based genetic algorithm proposed in 
this paper is the same as that used in AutoDock (Morris et 
al., 1998) except that the mutation stage is guided by 
information entropy of the existing samples relative to the 
whole solution space, instead of the Cauchy distribution 

 Degree of freedoms
Mass center of the ligand. .3 
Axial orientation 2 
Axial rotation 1 
Bond torsion n
Total  n+6



used by Morris et al. in AutoDock.  Suppose that there 
already exist (N-1) samples V  and 
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Our problem is to find the optimum position 
},,{ NNN qx  at which a new sample will be taken, and 

as a result that  will be covered to the largest degree of 
uniform by the addition of this new sample.  The diversity 
of variables will be compared through calculating their 
information entropy. The higher information entropy of 
the variable means the distribution of the variable is more 
divers. While one variable in GA operation with higher 
diversity means it behaves well in larger solution space, it 
will be more suitable for changed while the solution space 
with many constrains. On the other hand, the less 
discovered space of the variable will be tried. The behind 
idea is to have more diversity of samples in the solution 
space through mutation.  To find the position of 

},,{ NNN qx , we can maximize the information entropy: 
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where S is the entropy, p is the probability, M is the total 
number of subspaces, is  is the number of samples in 
subspace i.  It is seen that the above entropy is related to 
the existing samples and the partition of the whole 
solution space. 

A Test with Himmelblau Function 

The proposed information based genetic algorithm is 
used to find the minimum of a benchmark problem, the 
modified Himmelblau function: 
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The solution space is ]5,5[, 21 xx . For 
comparison, conventional GA is used for another parallel 
run.  In both the information based GA and conventional 
GA, the total population is 3000 and the mutant rate is 
0.07. Every generation will have 10 populations. The 
selecting rule is based on Roulette-Wheel-Selection, and 
the top 5 fitness individual will be selected, the more 
fitness of the individual the more generation of which will 
be regenerated.  Crossover is used to generate new 

individuals depend on their parents. We use two-point 
crossover to generate the next generations, which are 
calculated by linear interpolation from their parents: 
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where, x1and x2 are parent’s gene (the two variables of the 
modified Himmelblau function), x3 and x4 are the children 
(the next generations), is a random number.  Figure 1 
shows the performance of both the information based GA 
and the conventional GA in searching for the minimum of 
Himmelblau function.  It is clear that the information 
based GA performs much better than the conventional 
GA . 

 the information based GA the conventional GA 

(a)

(b)

Figure 1. Performance of the information based GA and the 
conventional GA in searching for the minimum of Himmelblau 
function: (a) distribution of samples in the background of fitness 
counter. (b) Fitness value changes with generation. 

Docking on PPAR-

Peroxisome Proliferator-Activated Receptors gamma 
(PPAR-  is important to metabolism of carbohydrate and 
the synthesis of lipid in human body, and is the receptor 
target of many projects for diabetes-drug discovery.  In 
this study, the information based GA proposed in this 
study and the conventional GA are used to dock a ligand 
named as 544 in the active site (yellow rods at the left-
bottom corner of Figure 2).  Figure 3 compares binding 
energy of the best 40 conformations among 256 runs 
found by the two algorithms, from the same initial position 
and conformation.  From this comparison, it is clear that 
the information based GA is much superior over the 
conventional GA, the former found much more low 
binding energy conformations than the later.  The best 
conformation found by the information based GA is 



shown in Figure 3. The reason for this may be that local 
search such as that suggested by Morris et al. is crucial to 
the conventional GA.  However, the superiority of 
proposed approach is very clear as shown in Figure 3. One 
of the suboptimal conformation is compared with the 
natural conformation of the ligand(544) also as illustrated 
in Figure 2, the binding energy is -12.0 kcal/mol, the 
docking energy is -15.3 kcal/mol, and the root mean 
square distance (rmsd)of the conformation compared to 
natural ligand is 28.609

Figure 2. PPAR-  (the left bottom corner) and the best 
conformation of ligand 544 found by the information based 
GA, where green rods are the native conformation of 544, the 
colored rods are the conformation found by docking(the right 
top corner). The suboptimal conformation is compared with 
natural conformation on the right bottom corner. 

Figure 3. The binding energy of the best 40 conformations 
found by docking using the information based GA and the 
conventional GA. 

Conclusion 

An information based genetic algorithm (GA) has 
been proposed in this study and tested with a benchmark 
problem, the minimization of Himmelblau function and 
with docking a ligand onto Peroxisome Proliferator-
Activated Receptors gamma (PPAR-  The novelty of the 
proposed algorithm is that the mutation is guided by 
maximizing the information entropy rather than random 
jumps, which facilitates the diversity of new solutions. 
Preliminary results from parallel runs show clear 
superiority of our information based GA over 
conventional GA both in speed and precision. 
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