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Abstract 

A new approach for predicting a wide range of physical and thermodynamic properties is proposed.  It 
involves calculation of the molecular descriptors of a target compound of unknown properties, followed 
by regression of this vector of molecular descriptors versus a database of compounds with known 
descriptors and measured properties.  The regression model, obtained for the descriptors of a target 
compound in terms of those of predictive compounds and their weighting factors, is then used for 
prediction of properties of the target compound. The precision of the prediction can be estimated based 
on the standard deviation of the correlation and the known precision of the property data of the 
predictive compounds.  The use of the proposed technique is demonstrated by using regression models 
of various precision and complexity to predict properties of  n-tetradecane. 
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Modeling and simulation of chemical processes require, in 
addition to the process model, data for physical and 
thermodynamic properties of the various compounds, 
often for wide ranges of temperatures, pressures and 
compositions. The number of the compounds used at 
present by the industry, or being of its immediate interest, 
is estimated at around 100 000, while the chemical 
structures, which are theoretically possible and may 
eventually interest the industry in the future, are at least 
several tens of millions (Horwath, 1992).  In contrast, the 
number of the compounds for which measured data are 
available is at most several thousands and for many 
properties is much less.  In cases where experimental data 
for the needed properties are not available, they have to be 
estimated by using suitable quantitative structure – 
property relationships (QSPRs). Correlations of acceptable 

accuracy can be derived between measured values of pure 
component constants, such as the normal boiling 
temperature (Tb), liquid density (d4

20 ), critical properties 
(Tc, Pc, Vc ), etc., and molecular descriptors (Poling et al., 
2001).   

Lydersen (1955) initiated the use of functional group 
contributions as descriptors for estimating critical 
constants.  Nowadays, most available methods are based 
on atom contributions, bond or group interaction 
contributions and group contributions (Constantinou and 
Gani, 1994, Poling et al., 2001). An alternative to the 
group contribution methods is to find, out of a huge 
database, a combination of molecular descriptors, which 
defines the most “significant common features” (SCF) of 
the described molecules (Wakeham et al., 2002).  The 
different molecular descriptors in the database may be 



  
 

                                                          

computed by simulated molecular mechanics, quantum 
chemical methods, the topology of the molecules, etc. The 
descriptors that are significant for the prediction of a 
particular constant and their weighting factors are found 
by stepwise regression techniques. 

Poling et al. (2001) carried out extensive studies 
regarding the accuracy of the prediction of the various 
molecular structure based techniques.  They found that for 
most compounds the prediction error is less than 5 %.  
However, for a considerable number of compounds the 
error of the prediction exceeds 10 %. Moreover, 
differences in the values of unknown properties predicted 
by different methods may amount to more than several 
hundred percents.  Unfortunately, for a target compound 
of unmeasured pure component constants, it is impossible 
to assess the prediction accuracy.  With no feed-back on 
the prediction error, it is impossible to choose among the 
methods proposed by different authors, and to advocate 
the best. 

As a fresh first step towards overcoming the 
limitations of the existing prediction techniques, we are 
advocating hereunder a novel technique.  It is based on a 
presumption for a linear dependency between the 
molecular descriptors of various compounds, and between 
their pure components constants.  The database described 
by Cholakov et al. (1999) and Wakeham et al. (2002) is 
used to test this presumption.  It contains 99 molecular 
descriptors for 260 compounds. The molecular descriptors 
include molecular mass, carbon atom descriptors and 
descriptors obtained from simulated molecular mechanics 
such as total energy, stretch energy and standard heat of 
formation.  Using the SROV algorithm of Brauner and 
Shacham (2003), a linear structure-structure correlation of 
the molecular descriptors of a target compound versus the 
molecular descriptors of several predictive compounds is 
developed. In the prediction stage the same correlation is 
used as property-property correlation to predict the 
properties of the target compound using the measured 
properties of the predictive compounds. The constant 
properties that available in the DIPPR database1 are used 
in the prediction stage. In the following, the derivation of 
the structure-structure correlation and the use of the 
proposed technique will be briefly reviewed. 

Derivation of the Structure-Structure Correlation 

Let us assume that the vector of properties of the 
target compound y (the dependent variable) is potentially 
related to a set of m vectors of properties of predictive 
compounds (independent variables) x1, x2,…xm. The 
following partition of the y and x vectors to sub-vectors is 
used: 
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where yc is an N vector of known properties, yp is a K 
vector of unknown properties. Both the N vector xcj and 

 

1 The development of the DIPPR database (http://dippr.byu.edu) 
is supported by the AIChE organization 

the K vector xpj contain known properties. Typically, the 
sub-vectors yc and xcj contain properties, which are 
directly related to the molecular structure and can be 
calculated with high accuracy (molecular descriptors), 
while the sub-vectors yp and xpj contain measured 
properties with various levels of experimental error. We 
wish to model the structure-structure relationship between 
yc and the independent variables xc1, xc2, … xcm by a linear 
regression model, with the general form:  

icmimicicci xxxy εβββ ++= K2211                               (2)                           
where the weighing factors mβββ K21, are the model 
parameters to be estimated and εi represents independent 
normal errors of a constant variance. 

Practical application of equation (2) requires 
preparation of a bank of potential predictive compounds as 
a database. The same set of molecular descriptors must be 
defined for all compounds included in the database, while 
the span of molecular descriptors should reflect the 
difference between any two compounds in the data-base. 
Having the yc for a target compound defined as well, a 
stepwise regression procedure can be applied to the 
database in order to identify the most appropriate 
predictive compounds that should be included in the 
structure-structure regression model (Equation 2) and to 
obtain the respective model parameters. Upon identifying 
the model parameters, the following equation can be used 
for predicting unknown properties of the target compound: 

pmmppp xxxy βββ K2211 +=                                      (3)                          
The properties that can be predicted for the target 
compound include all the properties that are available for 
all the predictive compounds included in the structure-
structure correlation. 
 The SROV algorithm of Shacham and Brauner 
(2003) is used for selection of the predictive compounds 
that should be included in the structure-structure 
regression model and for calculation of the model 
parameters. The SROV algorithm solves Eq. (1) using QR 
decomposition, by decomposing Xc into the product of a 
matrix Q (of orthogonal columns) and an upper triangular 
matrix R. The basic variables (those included in the 
regression model) are identified by applying the Gram-
Schmidt orthogonalization technique to the whole set of 
variables in a stepwise fashion.  At each step, an 
independent variable, xp is selected to enter the model on 
the basis of the strength of its linear correlation with the 
dependent variable.  The strength of this correlation is 
measured by the vector product  YXj = yTxj , where y and 
xj are centered and normalized to a unit length.  Therefore, 
the value of | YXj | is in the range [0,1].  In a case of a 
perfect correlation between y and xj, |YXj| = 1, while if the 
two vectors are orthogonal, YXj  = 0. The YXj is often 
denoted as the partial correlation coefficient. 
 Upon the selection of xp at step k, the Q and R 
matrices are updated. The update is carried out for all the 
columns associated with non-basic variables, whereby the 
columns of the Q matrix contain the updated subset of 
non-basic variables (not yet included in the regression 
model), which are orthogonal to the subset of the basic 
variables. At the same time, the parameter value associated 
with xp is calculated and the y vector is updated to obtain 



  

the unpredicted residuals, which are orthogonal to the 
basic variables subset. The signal-to-noise ratio in the 
correlation is used as a criterion for stopping addition of 
new variables to the model. Only those variables, which 
are associated with signal-to-noise ratio greater than one, 
can be selected to the model. 
 Upon obtaining a regression model, the SROV 
algorithm proceeds to additional phases, where the 
variables selected to the model are rotated to ensure that 
the ‘optimal’ model has been identified, independently of 
the order of variables selection.  Eventually, the optimal 
model is that of the lowest standard deviation and all its 
parameters are significantly different from zero. 

Prediction of the Properties of n-tetradecane 

The SROV program was used to identify a linear 
relationship between the molecular descriptors of n-
tetradecane (the target compound) and the molecular 
descriptors of the rest of the compounds in the database.  
To carry out this study, the 99 molecular descriptors in the 
data-base were normalized by dividing each descriptor by 
its maximal absolute value over the 260 compounds in the 
data-base.  
At the first step, SROV identified n-pentadecane as having 
the highest correlation with the target compound n-
tetradecane (YXj  = 0.99967).  The value of YXj is slightly 
lower for n-tridecane (YXj  =  0.99964) and n-dodecane 
(YXj  = 0.99842). The high correlation (collinearity) that 
exist between the normalized molecular descriptors of  n-
tetradecane and those of  n-pentadecane is further 
demonstrated in Fig. 1, where the relation between the 
normalized molecular descriptors of the two compounds is 
depicted. Evidently, the descriptors of these two 
compound align on a straight line with a zero intercept, a 
slope of  0.9578 and a linear correlation coefficient of: R2 
= 0.9991. The standard deviation of this correlation as 
calculated by SROV is σ = 0.00486. Thus, the first 
structure-structure correlation identified for n-tetradecane 
is yc = 0.9578 xc1 , where xc1 is the vector of normalized 
molecular descriptors of  n-pentadecane. 
 After selecting n-pentadecane to the model, n-
dodecane is identified as having highest correlation with 
the target compound, with  YXj =0.9981. Adding n-
dodecane to the model yields the correlation yc = 0.65806 
xc1 + 0.34426 xc2, where xc2 is the vector of normalized 
molecular descriptors of  n-dodecane. The standard 
deviation of this correlation is σ = 0.0003, thus smaller by 
more than an order of magnitude than that obtained with 
one predictive compound.  
 Upon adding n-dodecane to the model, the YXj 
values drop considerably. Propane is identified as having 
highest correlation with the target compound, with YXj  = -
0.47654. After adding propane to the model, SROV 
continues to generate structure-structure models with 
increasing number of predictive compounds and 
decreasing standard deviation values. The model of the 
minimal standard deviation (σ = 8.18×10-5) that is 
generated contains six predictive compounds. The details 
of three structure-structure models are shown in Table 1. 
The models shown include model No.1 with one 

predictive compound, model No. 2 with two predictive 
compounds and model No. 3, which is the minimal 
standard deviation model, with six predictive compounds.  
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Figure 1. Plot of normalized molecular descriptors of n-
tetradecane versus those of n-pentadecane 
 
Table 1. Structure-structure correlations for the target 
compound n-tetradecane 
 

 Coefficients of Models No. 
Compound 1 2 3 

n-dodecane - 0.3443 - 
n-tridecane - - 0.50976 
n-pentadecane 0.95779 0.65806 0.45603 
n-heneicosane - - 0.04587 
n-docosane - - 0.57114 
n-tricosane - - -0.9856 
n-tetracosane - - 0.4031 

Standard dev. 
4.86E-

03 
3.01E-

04 
8.18E-

05 
 
 The structure-structure models can be used for 
prediction of properties of n-tetradecane by introducing 
the coefficients and the vector of measured properties of 
the predictive compounds into Eq. (2).  We have applied 
the correlations obtained to predict 29 measured 
properties, which are available for most of the predictive 
compounds and for the target compound in the DIPPR 
database. Six of those properties are listed in Table 2. The 
properties include solid (such as melting point) liquid 
(such as normal boiling point) and gas phase (such us 
critical temperature) properties. Predicted values for the 
target compound were calculated using the three structure-
structure correlations shown in Table 1. The 
corresponding relative errors in the prediction are also 
shown in Table 2. In analyzing the results of the 
predictions for the various properties the precision of the 
experimental data should also be considered. In the DIPPR 
database, the "reliability" of the measured value is given as 
an indicator for the upper limit on the experimental error. 
In general, the properties can be classified into "high 
precision" (for which high precision data is available for 
all the predictive compounds) "medium" and "low" 
precision. Typical examples for high precision properties 
are the normal boiling point, liquid molar volume and 



  
 
critical temperature (reliability in DIPPR for n-
pentadecane is <1%), medium precision properties include 
the critical pressure and volume (reliability for n-dodecane 
is <10%) and a typical low precision property is the triple 
point pressure (reliability for n-tricosane is <50%). 
 Model No. 1 of one predictive compound cannot 
predict the properties within the experimental error level. 
The prediction error is greater than 1% even for the "high 
precision" properties (see Table 2). Model No. 2 of two 
predictive compounds predicts all but one property (heat 
of fusion at melting point) within the experimental error 
level, in most cases the error even lower.  Low prediction 
errors compared to the reliability assigned by DIPPR may 
indicate that the precision of the experimental data is 
actually higher than the assigned reliability. Model No. 3 
of six predictive compounds yields in many cases more 
accurate prediction than model No. 2, but there are almost 
the same number of properties for which the prediction is 
less accurate. This shows that the higher precision of the 
structure-structure correlation may not necessarily 
improve the property prediction as a result of larger 
experimental errors in the predictive compounds that 
added to the model.  

Conclusions 

 The new approach for predicting a wide range of 
properties for pure compounds has been demonstrated. In 
addition to the example presented here, the new technique 
has been tested for predicting properties of many 
hydrocarbons of different homological series, in particular 
the compounds included in Table 7 of Cholakov et al. 
(1999) and  in Table 7 of Wakeham et al. (2002). The 
results of those tests (which could not be included here 
due to space limitations) confirm the following 
conclusions:  

• The proposed technique predicts most of the 
properties for the compounds tested within 
experimental error level with structure-structure 
correlations containing between two to eight 
predictive compounds. It should be emphasized 
that one structure-structure correlation is used to 
predict all the properties of a target compound. 

• The structure-structure correlation can be used to 
check consistency of the experimental data 
available for the target and predictive compounds 

and to verify the accuracy of the error bounds 
specified for those data. 

• Several alternative structure-structure correlations 
can be generated for the same target compound 
enabling the use of different correlations for 
different properties according to the experimental 
data available for the predictive compounds. 

• The error in prediction of the properties of a 
target compound for which no experimental data 
is available can be estimated using the standard 
deviation of the structure-structure correlation 
and the error level estimates of the predictive 
compounds. 

More work is required for investigating the source of 
unusually large errors associated with some properties, 
which apparently cannot be explained based on the 
experimental errors alone. Further research will be carried 
out to extend the applicability of the method to some 
temperature and pressure dependent properties and to 
additional groups of organic and inorganic compounds.    
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Table 2. Prediction of properties of  n-tetradecane with various regression models 
 

   Prediction Error (%) 

   with model No. 
Property Units Value 1 2 3 

Critical Temperature K 693 2.15 0.08 0.19 

Critical Pressure Pa 1.57E+06 9.71 1.94 0.47 

Critical Volume m^3/kmol 0.83 2.59 0.18 0.18 

Normal Boiling Point K 526.727 1.11 0.07 0.03 

Liq Molar Volume m^3/kmol 0.261271 1.83 0.09 0.01 

Melting Point K 279.01 2.83 0.72 1.23 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 391
	02: 392
	03: 393
	04: 394


