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Abstract 

Finding optimal operating conditions fast for process systems is a key competitive factor in fine 
chemicals and pharmaceutical industrial sectors to increase the value added in many stages of a 
product/process lifecycle. To deal successfully with noise and bias in experimental optimization  
a statistical characterization of a local optimum that is more amenable for process  
outputs rather than numbers is discussed. The Kendall’s statistic  τ  is used for characterizing candidate 
local optima as clusters of strongly correlated points. A statistical simplex algorithm that resorts to 
correlation-based ordering of the simplex vertices is proposed. Results obtained in the optimization of 
the operating policy for a semi-batch reactor are presented. 

Keywords 

Process development, Optimization, Simplex method, Nonparametric statistics. 

Introduction

Finding optimal operating conditions fast for process 
systems is a key competitive factor in fine chemicals and 
pharmaceutical industrial sectors to increase the value 
added in many stages of a product/process lifecycle, 
including recipe development, scale-up and run-to-run 
optimization (Öberg and Deming, 2000). Product 
customization and reduced time-to-market are features of 
central concern to speed up process development in order 
to succeed against an increasing number of alternative 
products (Tirronen and Salmi, 2003). The drivers for 
experimental process optimization include compress 
timeliness to market of new products, increase throughput 
of projects, accelerate process screening for alternative 
products, and above all breaking the new bottleneck: 
process development (Harre, Tilstam and Weinmann, 
2000).  

 Three factors: noise, time and cost, constitute major 
stumbling blocks to the design of algorithms for 
experimental optimization with process data. Process 
outputs often contain significant quantities of noise, or 
error, and sampling bias while time and money allows for 

only a reduced number of experimental runs or trials. 
Another complicating factor is often the requirement of a 
“black-box” system behaviour, namely the lack of a priori 
fundamental knowledge (e.g. multiple optima or 
continuity) about the objective function and its noisy 
characteristics over the input domain of interest for 
optimization. The Simplex search method proposed by 
Nelder and Mead (1965) has been successfully used for 
mathematical functions but has severe difficulties to deal 
with noise, bias and process discontinuities that are 
ubiquitous in experimental optimization problems.  

This work proposes a statistical simplex method based 
on correlation ordering of the simplex vertices using 
sampled values of a noisy function.  The main difference 
of the statistical simplex with regards to the Nelder-Mead 
Simplex is that the ranking of points in the simplex is not 
based on the sample values of the objective function, but 
on the Kendall´s  τ correlation coefficients calculated for 
each one of the candidate optima resulting from a 
reflection, an expansion or a contraction operation in the 
current simplex. Also, a replication operation is added. 



  
 
Statistical characterization of a local optimum 

  
The function )(xg  to be optimized is typically 

unknown except for the scarce, noisy and biased 
information provided by a sequence of 
experimental trials. As a result, efficient detection of a 
local minimum or maximum in the face of output 
variability demands developing a statistical model for 
local optima. A robust and quite general assumption about 
sampled information in the vicinity of a minimum 
(maximum) is the local monotonicity property:  
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“Sampled values of the objective function for inpu s 
ix  closer to a local minimum (maximum) ∗  should 

exhibit a greater degree of positive (negative) 
correlation than those of inputs that are farther away.” 
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In mathematical terms, this assumption requires that, 

for a given candidate optimum , there locally exists a 
monotonic relationship 

∗x
ϕ  such that: 
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It is worth noting that this guiding model for a local 
optimum does not impose any constraint on the shape of 
ϕ  in the vicinity of the minimum (maximum) as long as 
the function is monotonically increasing (decreasing) with 
respect to the distance from the optimum. Furthermore, 
beyond the assumption of symmetry with respect to the 
distance metric • , local optimum characterization is 
independent of any continuousness assumption for the 

)(xg , or its derivatives. Also, there is no assumption 
about a given noise distribution for . The 
only constraint is that the expected value of , , for 
a given 

,....21),( ,iy i =x
y )(yE

x  is equal to )(xg . 
Sampled data will locally fit the model of optima in 

Equation (1) to different extents. The existence of a local 
optimum  requires a monotonic association between ∗x

∗−= xx iix  and . Under the influence of noise, 
we are interested in finding enough evidence to accept or 
reject the hypothesis of independence, i.e. no correlation 
between x

)( ig x

i and , against the alternative 
that may correspond to a positive or negative correlation, 
depending if  is a local minimum or maximum, 
respectively. To test for the strength of this relationship 
between  and , it is tackled here using 
nonparametric statistical methods that can be applied more 
broadly since much fewer assumptions about the data set 
need to be made. A typical non-parametric measure of 
correlation that can be used for this purpose is the 
Kendall’s correlation coefficient  (Sprent and Smeeton, 
2000). 
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Denoting the ranks of  by  respectively, the 
Kendall’s tau coefficient is defined to measure the strength 
of the association (correlation) between the ranks of 

ii yx , ii sr ,

x  
and . If such dependency between the ranks exists, then 
if we arrange the x-ranks in ascending order, i.e. so that 

, then y-ranks should show, despite noise and bias, 
an increasing trend when there is positive association 
(local minimum) or negative association (local maximum). 

Accordingly, Kendall (1938) proposed that after arranging 
observations in the increasing order of x-ranks, we score 
each paired difference ij  for 

y

iri =

ss − 1,...,2,1 −= ni  with 
 as +1 if this difference is positive and –1 if this 

difference is negative. Kendall called these differences 
concordances and discordances, respectively, with respect 
to an expected monotonic trend between the ranks. 
Denoting the sums of observed concordances and 
discordances by cn  and d  respectively, the equation for 
the sample Kendall’s coefficient τ is: 
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Since there exist )1(  21 −nn  pairs ij ss − , if all are 
concordances )1(  21 −= nnnc  and , then 0=dn 1=Kt  
and monotonic association is perfectly positive. Similarly, 
if all are discordances, monotonic association is perfectly 
negative with 1=τ . If the rankings of x and y are 
independent we do expect a fair mix of concordances and 
discordances, whence 0≈τ . When there are not ties in 
the ranking )n(nnn dc 121 −=+ , thus it is necessary to 
calculate only either the concordances or discordances 
(Sprent and  Smeeton, 2000). 
 
A  semi-batch reactor example  

Consider the chemical reaction system conducted in 
an isothermal semi-batch reactor, which behaves 
according to the ‘unknown’ mechanism: 

      A +  B    I  C;      B + B  D  (order 2.5) 
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At a given operating temperature, the ‘true’ kinetic 
parameters (which are also assumed unknown) have the 
following mean values: 5239.4,0.5,1355.1 321 === kkk    
and 5880.34 =k , which correspond to ‘perfect’ 
temperature control. In industrial-size batch reactors, 
temperature control is often far from perfect because of 
severe nonlinear behavior and poor modeling. As a result, 
the final state of each run will show unsystematic 
variations (see Table 1 below).  The reaction system is 
operated in a semi-batch mode where a stream of pure B 
(  moles per liter) is added to a 1000 liters 
vessel which initially contains 0.2 moles per liter of A and 
no B, and is filled to 50%. The objective is to maximize a 
productivity index (see Table 1) for the process defined as 
follows: 

2.0][ =feedB

ffff tVCxJ /)]([1000()( ××=                                     (3) 

For safety reasons in downstream processing, the final 
concentration of unreacted B cannot be greater than 
0.0032 moles per liter. Hence, if the remaining B has a 
concentration greater that this maximum the batch must be 
allowed to continue further until a final time f  where this 
threshold is achieved; as a result, the reactor productivity 
is decreased. Due to a heat extraction constraint the feed 
addition rate is limited to a maximum value of 12.0 liters 
min

t

-1, whereas because of production scheduling it is 
expected that the overall reactor cycle does not exceed 180 
min.  



  

Suppose data in Table 1 has been obtained and the 
optimal solution  is hypothesized to be one with a 
semi-batch period (x

∗x
1) of 40 min. and a feed rate (x2) of 

9.5 liter/min.   In order to assess for this optimum’s degree 
of fit, let’s test for a positive monotonic association 
between  and ( )xy ∗− xx . This relationship is 
illustrated in Figure 1.   To test for the hypothesis that the 
optimum is , the value of T)5.9 ,40(=x τ  and its 
significance need to be calculated.  Table 2 provides 
ranked data from Table 1; the paired ranks are used to 
calculate the statistic τ  for the hypothetical optimum 
yielding 4545.0−=τ  with concordances and 

 discordances.   
17=cn

49=dn
 

Table 1. Sampled data for the example 
Run # x1 x2 Tfinal[min] Index J 

1 45.0 7.25 102 0.5200 
2 50.0 10.00 152 0.4732 
3 48.0 8.00 118 0.5099 
4 55.0 9.00 156 0.4711 
5 38.0 12.00 125 0.5480 
6 40.0 9.5 109 0.5221 
7 44.0 11.00 139 0.4816 
8 54.0 9.20 156 0.4660 
9 58.0 8.60 162 0.4435 

10 50.0 7.00 112 0.5299 
11 52.0 9.60 155 0.4795 
12 55.9 9.00 160 0.4400 

 
Testing for the significance of the hypothesis 

0:0 =τH  against the alternative 0  :1 <τH  requires a 
pre-calculated value of the Kendall’s τ  critical values for 

 and a chosen significance level 12=n )%1( α−  
(Hollander and Wolfe, 1999). Tables give nominal 5 and 1 
per cent critical values for significance when 12=n  in 
one-tail test as -0.3929 and –0.5455. Corresponding values 
for cd  are 26 and 36, whereas an approximated 
Monte Carlo estimate of the exact one-tail probability P of 
rejecting  when in fact it is true is 0.0396. Since 

, we reject 0  and accept the 
postulated optimum with a confidence of  95%, on the 
other hand the available data does not provide strong 
statistical support to accept the postulated optimum at 

with a confidence level of 99%. 
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Table 2.  Ranked data for the example 
x-
rank 

1 2 3 4 5 6 7 8 9 10 11 12

y-
rank 

10 7 8 5 12 9 6 3 11 4 1 2 

Statistical simplex method 

Simplex search methods (Nelder and Mead, 1965) 
resort to an effective device for parsimoniously sampling 
the input space in the search for an optimizer. A simplex is 
a set of n+1 points in . Thus, a simplex is a triangle in 

, a tetrahedron in , etc. A non-degenerate simplex 
is one for which the set of edges adjacent to any vertex in 
the simplex forms a basis for the space. The simplex 
search algorithm mainly resorts to three operations: 
reflection, expansion and contraction. In the statistical 
simplex method, these operations are based on the 
correlation coefficient 

nℜ

2ℜ 3ℜ

τ  for hypothetical optima. 
Additionally, the statistical simplex algorithm uses a new 
operation, named replication, namely re-measuring the 
process output for one of the simplex vertices, e.g. the 
vertex exhibiting the greatest degree of correlation τ . 

At the beginning of the kth iteration, , a non-
degenerate simplex k

0≥k
∆  is given along with its n+1 

vertices, each of which is a point in . One of the key 
issues addressed by the statistical simplex method is how 
vertices should be ordered. It is assumed here that iteration 
k begins by labeling and ordering the current simplex 
vertices as  such that: 
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where  denotes the Kendall´s correlation coefficient 
for a given vertex under the hypothesis that it corresponds 
to the optimum. Assuming that the search seeks to 
minimize ,  is referred to as the best point or 
vertex, to  as the worst point and to as the next-
worst point. 
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       Following ordering, the worst point can be reflected 
as usual: 

12 +−= nxxxr                                                               (5) 
 
where ∑= =

n
i i n1 /xx  is the centroid of the n best point. 

Evaluate ( )ry x  and compute its rτ . If  then an 
expansion step is done by computing the expansion point: 
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Evaluate ( )ey x  and compute its e . If , accept 

e , leave out of the next simplex the point  and 
terminate iteration. Otherwise, accept r  as a replacement 
for  and terminate iteration. Whenever 

a replication of the best vertex  is 
done, accept  as a replace for  and the iteration is 
terminated. 
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A simplex contraction operation between x  and the better 
of  and r  is carried out if . If 

, compute the point corresponding to an 
outside contraction:  
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and using the current dataset calculate oc (note that this 
calculation is done without actually sampling the objective 
function).  If , accept oc , evaluate 

τ

)(
1

k
noc +> ττ x ( )ocy x  and 

terminate iteration. Else perform an inside contraction: 
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Evaluate ( )icy x  and compute its ic . If  accept 
c , leave out  and terminate iteration; else replicate 

the best vertex . 
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The main steps and logic of the statistical simplex 
method are summarized in Fig. 1. The rationale of 
replicating a previously tried operating condition is to 
improve the point-wise estimation of the process output 
for a given input. That is, spending some experimental 
effort sampling apparently inferior vertices to see if they   
might actually be better. The replication step gives rise the 
question of how best choose which vertex in the current 
simplex for re-measuring the process output.  

At first glance, it seems convincing to select the 
current “best” vertex as proposed above. This is called 
greedy replication.  The balance between exploration and 
exploitation can be achieved in different ways, though. 
One alternative to address the exploration/exploitation 
trade-off in the search for the optimum is resorting to 
random exploration in the so-called greedy−ε replication. 
The idea is simply that with probability ( )1

Reflection

?1ττ ≥r Expansion
yes

?nr ττ ≥ Replication
yes

no

no

Contraction

Ranking

Figure 1.  The statistical simplex method

ε−  the current 
best vertex is chosen for replication, whereas with 
probability ε  any of the other vertices in the simplex can 
be selected for re-measuring the process output.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A better method is to vary the vertex selection 
probabilities as a graded function of their corresponding 
correlation coefficient. The best vertex is still given the 
maximum selection probability for doing a replication 
experiment, but other operating conditions, even the worst 
vertex, are given probabilities which are dependent on 
their Kendall τ ´s. This is called the softmax criterion for 
replication where the probability of selecting the kth 
vertex is defined as: 

∑
+

=

ΤΤ 1

0

// ee
n

i
k iττ                                                               (9) 

where Τ is a positive parameter called the “temperature”. 
High temperatures cause all vertices in the current simplex 
to be nearly equiprobable for replication. As the 
temperature is lowered, a vertex with higher τ  has greater 
chances of being selected. In the limit as , the bias 
towards pure exploitation is total, i.e., the probability of 
selecting the best vertex tends to 1, and no room for 
exploration is left.  

0→Τ

As a stopping condition in the search for the optimal 
condition the following ratio has been chosen: 
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where kg  stands for the output average for all the vertices 
in the kth iteration simplex and δ  is a small tolerance. In 
the Table 3 the results obtained for different variants of the 
Statistical simplex method with 05.0=δ  are provided.  

Table 3. Results  for the semi-batch reactor 

 Final  J # experiments 

greedy 0.5298 55 

(0.1)-greedy 0.5304 49 

softmax 0.5378 46 

Final remarks 

A direct search method for experimental optimization 
grounded on a statistical characterization of an optimum 
has been discussed. The logic for the statistical simplex 
algorithm is based on the correlation coefficients τ ´s for 
each vertex. A replication operation that addresses the 
exploitation/exploration dilemma is proposed to deal with 
noise and uncontrollable factors affecting process outputs.   
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